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The aim of the investigation was to develop a control system combining command and proportional control of robotic devices based on 
electromyography (EmG) signals.

Materials and Methods. EmG signals were recorded using 8-channel bracelet mYo Thalmic (Thalmic Labs, Canada). Command control of 
robotic devices was exercised by EmG patterns associated with 6 static hand gestures. The patterns were classified by periodic calculation of 
a root mean square value of an EmG signal for all channels with further recognition by a two-layer neural network based on back propagation 
algorithm. Proportional control was performed by calculating the mean absolute value of an EmG signal, and command execution speed 
adjustment proportional to this value. The software of the control unit was connected via wireless Bluetooth interface with a mobile robot 
assembled from a set of LEGo NXT mindstorms (LEGo, denmark).

Results. We presented a soft and hardware platform combining command and proportional control of robotic devices based on EmG 
signals, and determined the parameters providing optimal characteristics of classification accuracy of EmG patterns, as well as the speed and 
accuracy of proportional control. We put forward and studied the following schemes combining command and proportional control: 1) the 
use of independent channels of different control types with recording EmG signals from both hands, 2) the use of independent channels of 
different control types with recording EmG signals from one hand only, 3) the use of all channels recording an EmG signal from one hand for 
classification and dynamic selection of a channel for proportional control, and 4) the use of all channels recording an EmG signal from one hand 
for classification with an average signal across all channels for proportional control.

Conclusion. We proposed a novel system of combined command-proportional control of robotic devices based on the neuromuscular 
activity signals. We studies several schemes and chose the most preferable (Scheme 4) one, and found the optimal parameters for command 
classification accuracy, as well as speed and accuracy of proportional control.
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The use of human brain and muscle signals for 
adaptive control of external robotic devices is a critical 
interdisciplinary task, the solution of which lies both 
in various fundamental sciences (neurobiology, 
neurotechnology), and in applied biomedicine 
(rehabilitations devices and methods, exoprostheses 
and exoskeletons, treadmills, etc.) [1–14]. Among many 
works there can be distinguished two main research 
lines. The first aims at brain-machine interfaces for 
a wide range of users for neurocontrol of mechanized 
software and hardware platforms [12–15]. The second 
line is focused on biomedical problems, and rehabilitation 
of patients with disordered motor function due to injuries 
or nervous diseases [8–11, 13, 16, 17].

Exoskeleton complexes can serve as a dramatic 
example of innovative devices combining the latest 
advances of control theory of both neurointerfaces 
and rehabilitation medicine [4–7, 17]. An integral part 
of these systems is an information interpreter coming 
from multiple biometrical sensors — a classifier of motor 
patterns, the realization of which requires a particular 
approach [18–20].

In this study we put forward a complex algorithm for a 
control system using electromyography (EMG) signals. 
The algorithm is universal, i.e. the controlled objects can 
be various robotic devices: mobile and humanoid robots, 
exoskeletons of upper and lower extremities.

Several strategies can be used to solve the problem of 
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control of external (“additive”) devices using EMG signals. 
conventional techniques are based on one-channel 
recording and limited to either trigger control based on 
detecting a threshold signal, or proportional control in 
case of continuous monitoring of some discriminating 
feature extracted from an EMG signal. It should be 
noted that multichannel recording significantly expands 
control capabilities, and entirely new signal processing 
techniques are used, such as classification of EMG 
patterns and multichannel regression [11, 14, 21].

The method of pattern classification perfectly combines 
with command control and can be used in cases when 
a controlled device is equipped with an automatic local 
control system able to generate macrocommands. In 
turn, proportional control is highly sought in the absence 
of such local control system, as well as if it is necessary 
to provide the accuracy of a movement executed.

The aim of the investigation was to develop a novel 
system to combine command and proportional control, in 
which a movement type is determined according to the 
classification, and the speed of motion execution at any 
specific time is determined based on the characteristic of 
EMG signals.

Materials and Methods. The experiments involved 10 
healthy research subjects aged from 20 to 56 years. The 
study complies with the declaration of Helsinki (adopted 
in June, 1964 (Helsinki, Finland) and revised in October, 
2000 (Edinburg, Scotland)) and was approved by the 
Ethics committee of Lobachevsky State university of 
Nizhni Novgorod. All patients gave their written informed 
consent.

EMG signals were recorded by 8-channel bracelet 
MYO Thalmic (Thalmic Labs, canada) (Figure 1), the 
electrodes in the device being situated along the circle 
around the forearm. To a certain extent, such localization 
complicates the recognition of EMG patterns compared 
to the more popular schemes [18], where an electrode 
position is determined by the localization of motor areas 
of the studied muscles.

We divided the data flow of each channel into windows, 
200 samples in size, with consideration for sampling 
frequency of 2,000 Hz it corresponded to a time interval 
of 100 ms. Windowing was performed at a pitch of 100 
samples (50 ms). We calculated a mean square of a 
signal for each window (root mean square, RMS), which 
we used further for classification as a signal feature:

,
                                

(1) (1)

where N is the number of signal values in a time window; 
хn is a signal value at a time point n.

For proportional control we used mean absolute value 
(MAV), a signal value in modulus and averaged over all 
the calculations in a window:

.                              (2)

Since a window size for successful proportional 
control was not known a priori, and was to be varied 
during the experiments, and due to the fact that RMS 
and MAV calculations could require the windows of 
different sizes, in this study we calculated MAV using 
a formula of exponentially moving average requiring no 
data segmentation into windows:

,                   (3)

where MAVt is exponentially moving average of an 
absolute value at point t (current value), MAVt–1 is a value 
of exponentially moving average at point t–1 (previous 
value); хt is the value of EMG signal at a time point t 
(the most recent recorded value); α is the coefficient 
characterizing weight reduction rate.

The coefficient α characterizes the effect of the 
previous values on a current mean value, and can be 
expressed as a window average value:

α=2/(n+1),                                      (4)

where n is the amount of initial function values.

Command and Proportional Control of External Robotic Devices

Figure 1. Represented version of hardware and 
software system: MYO Thalmic bracelet, a laptop 
computer with program control, a mobile robot
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As motor patterns for classification we used 6 static 
hand gestures (Figure 2, a classification block is marked 
by setting in a green box). Test subjects were making 4 
series consisting of 9 gestures randomly, each gesture 
being executed within 2–3 s. A hand was relaxed 
between different gestures.

RMS values of all channels calculated in accordance 
with the formula (1) were sent the classifier input. As a 
classifier we used a multilayer network of formal neurons 
with a standard back propagation algorithm. For machine 
learning we needed 1,000–4,000 iterations (epochs) that 
took 15–60 s when calculated on Intel core I3 computer. 
After the procedure a classifier could operate on-line, 
with a recognized gesture being highlighted in a program 
interface (Figure 2, “command 1”).

To study proportional control and its possible 
combination with command control, we developed a 
functional realized in a proportional control block of the 
principal form of software (Figure 2, marked by setting in 
a red box).

The nature of dependence of EMG signal amplitude 
on muscle contraction was studied using a hand gripper 

with scale marks 25, 50, 75 and 100%. The preliminary 
studies showed that according to EMG signal (MAV) 
100% gripper corresponded to the grip of a hand 
dynamometer with the force of 320 H. We canceled the 
further use of a dynamometer due to the interrupt mode 
at the maximum effort. First we recorded MAV of one of 
EMG channels at 100% grip of a hand gripper, which was 
kept within 3 s. Then a test subject relaxed his hand, the 
procedure being repeated after a 15-second pause, the 
grip of a hand gripper being equal to 25, 50 and 75%. In 
this case we calculated MAV for the whole time period, 
during which a test subject was generating the force.

Then, every test subject underwent a MAV 
normalization procedure, during which an operator 
marked a signal level at a relaxed upper extremity using 
a SetMin command, and at maximally strained extremity 
using a SetMax command (a gripper was not used in 
this case). After that a lower slider of proportional control 
(Figure 2, a red box, a blue marker) started moving online 
depending on MAV recorded. Test subjects were offered 
to repeat the protocol slider movements by changing 
a hand effort (Figure 2, a red marker), the slider being 

Figure 2. The interface of a robotic device control software using EMG signals. classification module is marked by setting 
in a green box, proportional control module is set in a red box, visualization module of EMG signals is marked by setting in 
a blue box. The insertion demonstrates the result of proportional control experiment
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preset for successive demonstration of values of 75, 
25, 100, 50% within 5 s for each value. The results 
were displayed in the form of a diagram with the curves 
corresponding to the task (Figure 2, “protocol”), the task 
being accomplished using EMG interface (Figure 2, 
“experiment”).

In combined command and proportional control 
experiments a test subject was to perform one of the six 
static gestures simultaneously with the abovementioned 
proportional control task. In this case the diagrams 
showed the curve areas corresponding to correct 
recognition.

To assess the performance efficiency of the suggested 
control concept we used a mobile robot assembled 
using LEGO NXT Mindstorms (LEGO, Denmark). The 
software sent online, with frequency of 10 Hz, using 
wireless Bluetooth interface command corresponding to 
a recognized gesture. And command execution speed 
was determined by the value calculated by a proportional 
control block.

Results. preliminary findings showed that MAV of 
an EMG signal recorded in the flexor muscles of the 
forearm demonstrated linear dependence on the efforts 
applied (Figure 3). Such dependence type enables to 
use a recorded EMG signal for proportional control, 
when the controlled value depends on signal amplitude, 
and respectively, on muscle strain degree.

Since MAV is a time-averaged value, first of all it was 
necessary to find out how the average window size or 
its inversely proportional value α (equation 4) influenced 
control quality. The findings showed (Figure 4) that 
α has an effect on the time when a controlled value 
attains a quasisteady value, and the variability degree 
of the value. Thus, if α=0.001 then the average time 
of attaining a stationary value in 10 test subjects was 
2.7 s, if α=0.003 it was 1.5 s, and if α=0.009 it was 
equal to 0.9 s. Variability was assessed using MAV 
standard deviation, starting calculating from the moment 
of attaining a quasisteady value. Its value was 1.4, 2.9 
and 6.7%, respectively. Subjectively, the test subjects 

noticed that if α=0.001 the controlled value changed with 
the more delay, and if α=0.009, it caused difficulties in 
keeping it at a certain level. Reasoning from this fact, for 
further studies we used α=0.003.

To adjust the recognition system of EMG patterns 
we carried out a study in order to determine the 
optimal parameters for the purposes of the accuracy of 
classification and time spent for machine learning. We 
tested three types of classifiers: a linear classifier, a one-
layer perceptron, and a multilayer neural network based 
on back propagation algorithm. We changed the number 
of layers and formal neurons in case of a multilayer 
network, and we changed the rate of learning, as well as 
the number of gestures. In accordance with the findings, 
we chose a two-layer neuronal network based on back 
propagation algorithm as an optimal classifier, the 
number of neurons being 9+7. The rate of learning was 
0.01. The number of gestures was reduced from 9 to 7, 
and for further study of combined command-proportional 
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Figure 3. The dependence of an average absolute value of EMG 
signal recorded in forearm flexor muscles while gripping of hand 
gripper in 6 test subjects
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Figure 4. The task execution, during which 
a test subject is to achieve and keep 75, 
25, 100, 50% of the controlled value within 
5 s. A “protocol” curve is the standard task;  
α curves are normalized MAV values of an 
EMG signal at different window average 
coefficients
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control we used 6 gestures (it was impossible to use 
gesture 7, a relaxed hand, for this purpose). The Table 
demonstrates the results of recognition system operation 
with determined parameters for different test subjects.

In the course of the work we tested four schemes of 
combined command-proportional control.

proportional control in the easiest Scheme 1 was 
performed regardless of command control, for this 
purpose two myobracelets were used. EMG patterns 
were classified based on eight electrodes situated on the 
upper extremity, while one of the electrodes on the second 
bracelet was used for proportional control. The scheme 
enabled to achieve maximum accuracy of classification 
and proportional control that can be estimated visually 
(Figure 5). In robot steering users had difficulties neither 
in mode switching and keeping the mode using static 
gestures of one limb, nor in setting the robot speed using 
different degrees of strain of another forearm muscles. 
However, the scheme has two substantial defects: there 

should be used an additional myobracelet and two limbs 
that can be impossible in case of exoskeleton control.

The control in the rest schemes was exercised 
by means of one myobracelet. In Scheme 2 seven 
electrodes were used for classification, and electrode 8 
was used for proportional control. When making gestures, 
a test subject was to grip a hand gripper (or clench his 
hand) with different force. The scheme appeared to 
be inoperable, since in this case two motor patterns 
were executed simultaneously, one of the patterns 
corresponding to an executing gesture, and another — 
to hand clenching by different force. It resulted to the 
following: even at 50% force the proportion of classifier’s 
errors increased up to inacceptable 30–40%.

According to Scheme 3 all 8 electrodes were used for 
classification. For proportional control at any time point 
there was chosen MAV of that channel, which contribution 
in a gesture under classification was maximal. A test 
subject could execute static gestures by different force, 
it had no significant effect on classifier’s work, though 
enabled to obtain MAV gradually dependent on force 
(Figure 6). The scheme turned out to be well-behaved 
in the experiments with online robot control, though MAV 
calculated this way differed in strong abrupt changes 
resulting in difficulties in setting the mobile robot speed. 
The attempts to increase a temporary window, in which 
an averaged MAV (α reduction) was realized, resulted 
in leap smoothing but significantly increased system 
response time delay.

Scheme 4 differed from the previous one in that all 
8 channels were used to receive a value that gradually 
dependent on an effort. As this value, we used MAV 
arithmetic mean value of all the channels. Averaging 
over all the channels resulted in leap smoothing with 
no increase in system response time (Figure 7). As a 
result, a test subject could change a value of a controlled 
variable, and correspondingly, the robotic device speed in 
experiments with an online controlled robot. Subjectively, 

The classification accuracy of recognition system of EMG 
patterns generated when performing 7 static gestures

Test subject No.; sex; body type;  
age (years)

Classification  
accuracy (%)

1; female; hyposthenic; 20 96.9

2; male; hypersthenic; 25 96.6

3; female; normosthenic; 25 94.8

4; male; normosthenic; 24 99.5

5; male; normosthenic; 56 97.6

6; female; normosthenic; 26 96.4

7; male; normosthenic; 28 98.2

8; male; normosthenic; 42 96.7

9; male; hypersthenic; 43 99

10; female; hypersthenic; 38 94.6

Figure 5. The task execution 
according to combined command-
proportional control when using 
Scheme 1 (the use of independent 
channels for command and 
proportional control). A “protocol” 
curve is the standard task; 
“gesture” curves are normalized 
MAV values of EMG signal when 
accomplishing the task with an 
appropriate gesture. curve gaps 
are the moments of EMG pattern 
fault recognition
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Figure 6. The task execution according to combined command-proportional control when using Scheme 3 
(the usage for proportional control of a channel with maximum activity contribution to EMG pattern). 
A “protocol” curve is the standard task; “gesture” curves are normalized MAV values of EMG signal when 
accomplishing the task with an appropriate gesture. curve gaps are the moments of EMG pattern fault 
recognition

Figure 7. The task execution according to combined command-proportional control when using Scheme 4 
(the use of average MAV value of all channels for proportional control). A “protocol” curve is the standard 
task; “gesture” curves are normalized MAV values of EMG signal when accomplishing the task with an 
appropriate gesture. curve gaps are the moments of EMG pattern fault recognition
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robot steering using one extremity appeared to be more 
difficult than using two ones (as Scheme 1 suggests), 
however, all users after 3–5-minute training were able to 
generate any of 6 commands for a robot simultaneously 
with mobile robot speed control.

Discussion. The development of high-hume robotic 
devices necessitates revolutionary changes in medical 
technologies. In particular, the last decade has been 
marked with a wide expansion of robotic systems in 
the sphere of technical equipment substituting missing 
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limbs, and rehabilitation equipment for locomotor 
patients.

Most advanced devices suppose the use of 
bioinformative indicators for effective communication 
with a user. In cases when cerebrospinal conduction 
of brain signals is partially impaired or remained 
unchanged, myoelectrical activity of target muscular 
groups is commonly considered as such indicator.

currently, there are two control strategies of robotic 
devices based on the use of neuromuscular signals. 
One of the strategies is focused on distinguishing some 
predetermined motion types, while another analyzes the 
muscular contraction intensity.

The authors of the present study for the first time 
made an attempt to develop a hybrid classifier of 
electromyographic activity combining the capabilities of 
a classical binary interpreter of neuromuscular signals 
(into a kind of a fixed “alphabet”: a set of commands 
that an executive unit understands) and a proportional 
translator enabling to vary the activation degree of an 
executive device.

Among four presented schemes of combined 
command-proportional control, Scheme 4 appeared 
to be the most optimal one, since it enabled to do with 
a myobracelet using only one extremity for control; in 
addition, it demonstrated high classification accuracy and 
proportional control. As for the disadvantage noted, some 
test subjects encountered the difficulties in using certain 
gestures, for example, supination. In Figure 7 (“gesture” 
6) an appropriate curve is highly discontinuous. It is likely 
to be related to the localization of muscles providing the 
gesture execution in relation to the electrodes controllable. 
For example, the contraction of musculus biceps brachii 
plays the major role in maintaining supination, since it 
cannot be recorded without an additional electrode. The 
disadvantage can be overcome by individual choice 
of gestures, or by means of total MAV normalization 
depending on the recognizable pattern that is going to 
be considered in future studies.

An anthropomorphic robotic manipulator (e.g., 
hand prosthesis) can serve as a striking example to 
demonstrate the advantages of the proposed concept of 
hybrid classification. Due to an algorithm, both the type 
of the motion executed (e.g., finger closing), and the grip 
strength.

Moreover, the inclusion of myoelectric activity 
analysis module in control circuit enables to activate 
biological feedback, which in its turn will make the 
integration degree of an executive unit and an operator 
reach a qualitatively new level. However, the activation 
of brain plasticity mechanisms promotes the recovery 
of lost motor functions resulted from neurological 
diseases and brain traumas. The combination of 
biofeedback mechanisms and accepted approaches of 
afferent stimulation (due to periodic repetitions of some 
fixed motion repertoire) gives rehabilitation therapy a 
multiplicative effect.

Thus, the advantages of the suggested hybrid control 
algorithm enable to expand the functional capabilities 
and efficiency of rehabilitation robotic complexes (in 
particular, exoskeletons of lower limbs).

Conclusion. We proposed a novel hardware-
software system to control medical robotic devices 
combining command-proportional control based on 
the neuromuscular activity signals. The investigations 
carried out revealed the optimal parameters in regard to 
the accuracy of command classification system, as well 
as speed and accuracy of proportional control. Moreover, 
we proposed several schemes of combined command-
proportional control, and analyzed their efficiency.

Study Funding. The study was supported by Ministry 
of Education and Science of the Russian Federation 
within the frame of federal target program “Research 
and development in priority areas of Russian scientific 
and technological complex development in 2014–
2020”. Aid grant agreement No.14.581.21.0011 dated 
01.12.2014 (unique agreement identifier of the project is 
RFMEFI58114X0011).

Conflicts of Interest. The authors have no conflicts 
of interest related to the present study.

References

Myo™ Gesture Control Armband — Wearable 
Technology by Thalmic Labs. uRL: https://www.myo.com/

Delsys® Trigno™ Wireless systems and smart sensors. 
uRL: http://www.delsys.com/products/wireless-emg/

chowdhury R.H., Reaz M.B., Ali M.A., Bakar A.A., 
chellappan K., chang T.G. Surface electromyography signal 
processing and classification techniques. Sensors 2013; 13(9): 
12431–12466, http://dx.doi.org/10.3390/s130912431.

Bortole M., Venkatakrishnan A., Zhu F., Moreno J.c., 
Francisco G.E., pons J.L., contreras-Vidal J.L. The H2 robotic 
exoskeleton for gait rehabilitation after stroke: early findings from 
a clinical study. J Neuroeng Rehabil 2015; 12: 54, http://dx.doi.
org/10.1186/s12984-015-0048-y.

Vorobyev A.A., petrukhin A.V., Zasypkina O.A., 
Krivonozhkina p.S., pozdnyakov A.M. Exoskeleton as a new 
means in habilitation and rehabilitation of invalids (review). 
Sovremennye tehnologii v medicine 2015; 7(2): 185–197, http://
dx.doi.org/10.17691/stm2015.7.2.22.

Mehrholz J., pohl M. Electromechanical-assisted gait 
training after stroke: a systematic review comparing end-effector 
and exoskeleton devices. J Rehabil Med 2012; 44(3): 193–199, 
http://dx.doi.org/10.2340/16501977-0943.

Singh R.M., chatterji S., Kumar A. Trends and challenges 
in EMG based control scheme of exoskeleton robots — a review. 
International Journal of Scienctific and Engineering Research 
2012; 3(8): 1–8.

Lyons K.R., Joshi S.S. A case study on classification 
of foot gestures via surface electromyography. In: Annu. Conf. 
Rehabil. Eng. Assist. Technol. Soc. Am. (RESNA). Denver, 
uSA; 2015.

Aszmann O.c., Roche A.D., Salminger S., paternostro-
Sluga T., Herceg M., Sturma A., Hofer c., Farina D. Bionic 
reconstruction to restore hand function after brachial plexus 
injury: a case series of three patients. Lancet 2015; 385(9983): 
2183–2189, http://dx.doi.org/10.1016/S0140-6736(14)61776-1.

1.

2.

3.

4.

5.

6.

7.

8.

9.

S.А. Lobov, V.I. Mironov, I.А. Kastalskiy, V.B. Kazantsev



СТМ ∫ 2015 — vol. 7, No.4   3�

 AdvAnced ReseARches 

Fougner A., Stavdahl O., Kyberd p.J., Losier Y.G., 
parker p.A. control of upper limb prostheses: terminology 
and proportional myoelectric control — a review. IEEE Trans 
Neural Syst Rehabil Eng 2012; 20(5): 663–677, http://dx.doi.
org/10.1109/TNSRE.2012.2196711.

Roche A.D., Rehbaum H., Farina D., Aszmann O.c. 
prosthetic myoelectric control strategies: a clinical perspective. 
Curr Surg Rep 2014; 2: 44, http://dx.doi.org/10.1007/s40137-
013-0044-8.

Ison M., Artemiadis p. proportional myoelectric control 
of robots: muscle synergy development drives performance 
enhancement, retainment, and generalization. IEEE Trans 
Robot 2015; 31(2): 259–268, http://dx.doi.org/10.1109/
TRO.2015.2395731.

Ison M., Vujaklija I., Whitsell B., Farina D., Artemiadis p. 
High-density electromyography and motor skill learning for 
robust long-term control of a 7-DoF robot arm. IEEE Trans 
Neur Sys Rehabil Eng 2015; 99: 1, http://dx.doi.org/10.1109/
TNSRE.2015.2417775.

Hahne J.M., Rehbaum H., Biessmann F., Meinecke F.c., 
Muller K.-R., Jiang N., Farina D., parra L.c. Simultaneous and 
proportional control of 2D wrist movements with myoelectric 
signals. In: IEEE International Workshop on Machine Learning 
for Signal Processing 2012. Santander, Spain; 2012; p. 1–6, 
http://dx.doi.org/10.1109/MLSp.2012.6349712.

Zoss A.B., Kazerooni H., chu A. Biomechanical design of 
the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME 

10.

11.

12.

13.

14.

15.

Trans Mech 2006; 11(2): 128–138, http://dx.doi.org/10.1109/
TMEcH.2006.871087.

Shenoy p., Miller K.J., crawford B., Rao p.N. Online 
electromyographic control of a robotic prosthesis. IEEE Trans 
Biomed Eng 2008; 55(3): 1128–1135, http://dx.doi.org/10.1109/
TBME.2007.909536.

Farrell T.R., Weir R.F. The optimal controller delay for 
myoelectric prostheses. IEEE Trans Neur Sys Rehabil Eng 2007; 
15(1): 111–118, http://dx.doi.org/10.1109/TNSRE.2007.891391.

phinyomark A., Limsakul c., phukpattaranont p. A novel 
feature extraction for robust EMG pattern recognition. J Comput 
2009; 1(1): 71–80.

Bichler O., Querlioz D., Thorpe S.J., Bourgoin J.-p., 
Gamrat c. unsupervised features extraction from asynchronous 
silicon retina through spike-timing-dependent plasticity. In: 
Proceedings of the 2011 International Joint Conference on 
Neural Networks 2011. San Jose, uSA; 2011; p. 859–866, 
http://dx.doi.org/10.1109/IJcNN.2011.6033311.

Mironov V., Lobov S., Kastalskiy I., Kazantsev V. 
Myoelectric control system of lower limb exoskeleton for re-
training motion deficiencies. Neural Information Processing 
2015; 9492: 428–435, http://dx.doi.org/10.1007/978-3-319-
26561-2_51.

Lobov S., Mironov V., Kastalskiy I., Kazantsev V. 
A spiking neural network in sEMG feature extraction. Sensors 
2015; 15(11): 27894–27904, http://dx.doi.org/10.3390/
s151127894.

16.

17.

18.

19.

20.

21.

Command and Proportional Control of External Robotic Devices




