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The aim of the investigation was to study the biodistribution of amino-amide chlorin e6 derivative conjugate with cobalt bis-dicarbollide as 
a potential boron transporter for the tasks of boron neutron-capture therapy.

Materials and Methods. The experiments were carried out on Balb/c mice with induced murine colon carcinoma CT-26. Amino-amide 
chlorin e6 derivative conjugate with cobalt bis-dicarbollide was administered intravenously, the dose being 5 and 10 mg/kg body mass. The 
sampling for microscopic study of the drug uptake in ex vivo organs and tissues was performed 3 h after the administration.

Results. Characteristic nanoconjugate fluorescent peak was found in most organs under study, significant selectivity of the compound 
being noticed. A high uptake level was recorded in the liver, spleen and lung tissue. At the dose of 5 mg/kg, the drug content in a tumor was 
not different from that in muscular tissue and skin; maximum uptake was found in the liver. If the dose was increased up to 10 mg/kg, the 
nanoconjugate content in a tumor appeared to be comparable with that in the liver, the tumor/muscle ratio of fluorescent signals was ~3.

Conclusion. The study showed the prospects for using photosensitizer conjugate (chlorin е6) with boron particles as a means to deliver 
boron into a tumor. The level of the preparation uptake in tumor tissue depends on a dose.
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Boron neutron capture therapy (BNCT) is a 
radiotherapy technique for malignancies characterized 
by high biological efficiency due to target radiation 
energy delivered directly to tumor cells. The method is 
based on relatively selective uptake of a non-radioactive 
isotope 10В in tumor cells and its further activation by a 
flux of thermal neutrons [1, 2]. Despite a high efficiency 
of the technique experimentally and clinically proved 
[3], up to the present, BNCT still cannot overstep the 
framework of clinical trials. There are several reasons 
for that, and one of them is the absence of effective 

techniques for boron delivery to tumor cells. The only 
approved compounds (3-(p-Boronophenyl)alanine: BPA, 
and sodium mercaptoundecahydro-closo-dodecaborate: 
BSH) approved for clinical use do not exhibit high uptake 
selectivity in tumor tissue [4–7].

To solve the problem of targeted boron delivery 
to tumor cells, there have been suggested different 
synthesis strategies of boron-based compound 
conjugates with bioactive molecules able to accumulate 
in tumor cells (precursors of nucleic acids, amino 
acids and peptides, carbohydrates, acridines, different 
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polyamines, as well as porphyrins and phthalocyanines) 
[1, 2, 8, 9]. One of the most promising concepts in the 
sphere of preparations produced for BNCT is the use of 
porphyrin conjugates with polyhedral boron compounds. 
Oenbrink et al. were the first to study borated porphyrins 
for BNCT in 1988. Porphyrins and their boron derivatives 
were found to be able to accumulate in many solid 
tumors, they being two-in-one preparations: both boron 
delivery agents, and photosensitizers for photodynamic 
therapy [10]. The compounds of this category are 
bound through linker chlorin and boron polyhedron 
[11]. Representatives of such compounds effectively 
accumulate in tumor cells, while the use of carboranes 
as a boron element in a molecule enables an increase 
in the isotope concentration in a tumor and provides the 
boron moiety stability [12].

The essential stage preceding clinical trials is the 
study of pharmacokinetics of boron-based porphyrins, 
the assessment of their ability to accumulate and stay 
in a tumor at the higher concentration compared to 
healthy tissues, and then gets out of the body. Since 
the isotope 10B is non-radioactive, it can be neither used 
as a radioactive label, nor detected using appropriate 
techniques. In this case the key advantage of boron-
based porphyrins is their ability to fluoresce that 
significantly facilitates the analysis of the preparation 
location and distribution in cells and living organisms 
using ex vivo and in vivo fluorescent imaging [13, 14]. 
These techniques enable the study of the fluorophore 
biodistribution in the body and assess its uptake in a 
tumor and healthy tissues.

The aim of the investigation was to study the 
biodistribution of amino-amide chlorin e6 derivative 
conjugate with cobalt bis-dicarbollide as a potential 
boron transfer in order to support boron neutron-capture 
therapy.

Materials and Methods
The compound under study, amino-amide chlorin 

e6 derivative conjugate with cobalt bis-dicarbollide 
(aminoalkyl-amide liker length, n=6) (Figure 1 (а)) was 
synthesized according to the technique previously 
developed [15].

The absorption and fluorescent spectra of a 
conjugate were assessed by a spectrophotometer-
spectrofluorometer Synergy MX (BD, USA).

Animals and a tumor model. In vivo experiments were 
carried out in full agreement with the ethic principles 
established by European Convention for the Protection 
of Vertebrate Animals used for Experimental and other 
Scientific Purposes (adopted in 18.03.1986 in Strasburg 
and approved in 15.06.2006 in Strasburg) and approved 
by the Ethics Committee of Nizhny Novgorod State 
Medical Academy. The biodistribution of boron-based 
conjugate was analyzed in Balb/c mice (female, 18–
20 g, n=9) supplied by the laboratory mouse facility of 
the Branch of Institute of Bioorganic Chemistry, Russian 
Academy of Sciences (Pushchino, Moscow region). The 
animals were kept in standard conditions of vivarium 
with a 12-hour light day.

For experimental tumors we used murine colon 
carcinoma CT-26 (No.CRL-2638 according to ATCC® 
catalogue). The cells were cultured in DMEM (PanEco, 
Russia) containing 2 mM L-glutamine (PanEco, Russia) 
and 10% fetal calf serum (HyClone, USA), at 37°С 
and 5% СО2, in culture bottles, 75 cm2 in area. At each 
passage stage the cells were treated with 0.25% solution 
of trypsin and versene (PanEco, Russia). Subculturing 
was performed 2–3 days later, when the culture 
confluence reached 80% [16].

To induce tumors the animals (n=9) were injected with 
1 million CT-26 cells in PBS, 100 µl, 10 mM (PanEco, 
Russia) subcutaneously in the thigh. The experiment 
was started on day 9–10 after the injection, when the 
tumor node diameter reached 9 mm.

In the study we used an initial solution of conjugate 
in cremophore, the active agent concentration being 
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Figure 1. Structural formula: black balls C-H, white balls B-H, a grey ball D-H (а), as well as absorption ε and fluorescence Ifl 
spectra of amino-amide chlorin e6 derivative conjugate with cobalt bis-dicarbollide (b)
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2 mg/ml, which was diluted by physiological saline up to 
the concentration of 1 mg/ml. The control group (n=3) 
was not given the preparation. Three mice were injected 
with the conjugate using a dose of 5 mg/kg body mass, 
and three mice were given 10 mg/kg. The solution was 
injected via the caudal vein, the injection volume being 
100 µl. 3 h after the boron-based conjugate injection 
the animals were sacrificed by the cervical vertebrae 
dislocation. For further microscopic study we used the 
samples of the following organs and tissues: tumors, 
striated muscles, skin, liver, kidney, spleen, small 
intestine, lungs.

Sample preparation and microscopic study. An 
entire tumor was cut from the surrounding tissue and 
dissected along a longitudinal axis perpendicular to the 
thigh surface. The femoral muscle was cut along fibers, 
and the kidney was cut along the sagittal plane of the 
organ. The liver, lung and spleen were sectioned deep 
longitudinally. The samples were analyzed immediately 
after they were prepared, without being fixed or frozen. 
Throughout the investigation the humidity of the 
preparations was maintained by moistening them with 
physiological saline.

The images were taken using a confocal laser 
scanning microscope Axiovert 200M LSM510 META 

(Carl Zeiss, Germany) with oil-immersion lens Plan-
Apochromat, ×40, with numerical aperture 1.3. Lateral 
resolution of the images was 1024×1024 pixels, pixel 
size being 0.22 µm. The conjugate fluorescence was 
excited at the wavelength of 514 nm, a signal was 
recorded using a spectral module META in the 560–
710 nm range at a pitch of 10 nm. Spectral information 
enabled one to identify a nanoconjugate signal against 
the background of tissue autofluorescence. All the 
imaged were recorded under identical conditions.

Data statistical processing. Using the microscope 
software, from the obtained spectral image we selected 
a channel that corresponded to the fluorescent signal 
in the 650–693 nm range. Using the program ImageJ 
(version 1.47v) we determined an average signal level 
over the each imaged area of the studied samples of 
tumor and healthy tissues. For each healthy tissue 
sample we studied from 3 to 5 fields of view. When 
analyzing tumor tissue samples the fields of view 
were randomly selected from central and peripheral 
parts of a tumor node (at least 5 fields of view for each 
sample). The data were presented as a mean signal 
value in arbitrary units ± a standard deviation for small 
samplings. For value comparison we used a one-way 
ANOVA test and Dunnett test.

Results and Discussion. The 
first stage of the investigation was 
to study optical properties of the 
obtained amino-amide chlorin e6 
derivative conjugate with cobalt 
bis-dicarbollide. The compound 
was characterized by intense light 
absorption in a visible spectrum with 
the peaks at 405, 500 and 665 nm 
that were close to chlorin е6 peaks 
(Figure 1 (b)). Maximum fluorescence 
was found at 670 nm. The previous 
experiments on cell cultures [14] 
revealed an intense accumulation 
of the conjugate in А549 line tumor 
cells, which was characterized with a 
cell/medium distribution factor of ≈80. 
The property enables one to suggest 
the possibility to achieve a therapeutic 
dose necessary for BNCT, with higher 
contrast to healthy tissue and lower 
total toxicity in vivo. In vitro findings 
served as the basis to initiate the study 
on in vivo tumor models. The selection 
of experimental model CT-26 was due 
to high vascularization of a growing 
tumor [17].

The study of tumor tissue samples 
revealed an intense fluorescent 
signal in it (Figure 2 (a)) at both 
nanoconjugate doses 3 h after the 
injection. Maximum fluorescence was 
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Figure 2. The images of tumor tissue samples of a control animal and an 
animal after a nanoconjugate injection (10 mg/kg, 3 h after injection) (а), as 
well as fluorescence Ifl spectra of the circled areas (b). The size of the images is 
225×225 µm
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found at 665–670 nm (Figure 2 (b)), which corresponded 
to spectrum of the conjugate under study.

The specific characteristic of fluorophore uptake in 
a tumor was its non-uniformity in different tumor parts 
(Figure 3). One might assume that the phenomenon is 
due to the so called EPR-effect (enhanced permeability 
and retention effect), i.e. the peculiarities of the tumor 
vasculature including the non-uniformity and chaotic 
state of forming vessels [18].

Characteristic fluorescence peak of the conjugate 
was found in most organs under study; in addition, the 
compound was characterized by significant uptake 
selectivity (Figure 4).

High conjugate uptake level was recorded in the liver, 
kidneys, spleen and lung tissue that is consistent with 
the pharmacokinetics data received for preparations of 
chlorin family, and associated with morphofunctional 
characteristics of these organs [19]. A conjugate signal in 
skeletal muscles, as well as in muscular walls of hollow 
organs (stomach, intestines, heart), was significantly 
lower. Moreover, skin samples demonstrated nearly total 
absence of conjugate uptake. 3 h after the injection, a 
considerable amount of the substance remained in the 
circulation and was recorded in major vessels of different 
organs (Figure 4 shows the vessels feeding the skeletal 
muscle).

A quantitative analysis of the fluorescent signal level 
in tissue samples enabled one to reveal the dependence 
of nanoconjugate uptake on a preparation dose. After 
the conjugate injection, 5 mg/kg, its content in a tumor 
differed slightly from that in muscular tissue and skin, its 
maximum uptake being found in the liver (Figure 5).

If a dose is increased up to 10 mg/kg, the 
nanoconjugate content in a tumor appeared to be 
compatible with that in the liver, and the tumor/muscle 
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Figure 3. The images of the areas with different nanoconju-
gate uptake (1, 2) in animal tumor tissue after being injected 
(10 mg/kg, 3 h after injection) demonstrate the non-uniformity 
of its distribution (a), as well as fluorescence Ifl spectra of these 
areas (b). The size of the images is 125×125 µm. Figure 2 
shows the color code

Figure 4. The images of animal tissue samples 3 h after nanoconjugate (10 mg/kg) injection. The size of the 
images is 225×225 µm. Figure 2 shows the color code
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ratio for fluorescent signals was ~3. It should be 
mentioned that the standard deviation of a signal level 
in a tumor was high if the nanoconjugate was injected 
at the dose of 10 mg/kg that was consistent with the 
microscopic study findings, when the tumor was found 
to have both the areas with high and average signal 
levels (See Figure 3).

Thus, the preliminary study showed a boron-
based conjugate of chlorin to meet the requirements 
for preparations used for BNCT [2]. In particular, the 
compound demonstrated its ability to relatively selective 
uptake in a tumor, the “tumor/healthy tissue” ratio being 
3:1. The conjugate exhibited low uptake in skin that 
enables one to expect its low phototoxicity and safety 
when used in the light. Chlorin property to fluoresce 
enables to control the boron content in tissues using in 
vivo techniques. These facts enable one to conclude 
the application perspectiveness of boron-based 
conjugates as the agents to deliver boron in BNCT. The 
next stage of   the work will be the study of conjugate 
pharmacokinetics, as well as the analysis of boron 
content in a tumor and healthy tissues in order to develop 
optimal conditions and further radiation exposure.

Conclusion. The study of biodistribution of a 
photosensitizer conjugate (chlorin e6) with cobalt bis-
dicarbollide demonstrated the perspectiveness of its 
application as a boron delivery means to a tumor. The 
uptake level of a conjugate in a tumor tissue depends on 
the dose administered.
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