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We propose an alternative optical coherence tomography (OCT) contrast mechanism based on analysis of speckle temporal 
synchronization using B-mode OCT structural images. We show that the changes in synchronized speckle intensities with time may be 
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phantom and pre-clinical in vivo results suggest that the proposed synchronization approach is sensitive to tissue type/pathology, potentially 
enabling tumour quantitative evaluation and its delineation from surrounding normal tissues.
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Introduction

Optical coherence tomography (OCT) is an emerging 
non-invasive imaging modality for visualizing subsurface 
tissue microstructure in vivo at resolutions approaching 
histology and blood flow details at the microcirculation 
level [1]. The obtained OCT images exhibit grainy 
patterns called speckles [2] produced by interference 
of coherent waves scattered by object features that are 
smaller than the OCT spatial resolution. While adding to 
noise, speckle characteristics are also known to contain 
useful information related to tissue type [3], cellularity [4], 
response to therapy [5] and other quantities of interest that 
are not directly visible nor spatially resolved in structural 
B-mode OCT images. Potential applications of speckle 
patterns for quantitative analysis and interpretation of 
OCT images is currently a subject of growing interest 
among research community [6–10]. Newly developed 

and well-established methods have been used to analyse 
OCT speckle patterns. Spatial statistics [3, 11] and 
fractal dimension analysis [12, 13] show their potential 
relevance to cellular/subcellular microstructure of tissue, 
while temporal statistics quantify changes in underlying 
tissue viscosity thus enabling sensitive delineation of 
tissue microvascular network [14–16]. In this study, we 
consider another novel alternative to quantify the changes 
in speckle patterns and propose an OCT contrast 
mechanism based on the speckle temporal statistics.

OCT speckle pattern changes with time depending 
on the nature of the processes occurring within the 
living tissue, e.g. intracellular motion or blood flow 
within the vascular network. The rate of intracellular 
motion differs for various types of tissue depending on 
the metabolic state of cells, their viability, ion transport, 
motion of organelles and other activities [17]. Cellular 
packing density varying from one type of tissue to 
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another also plays a significant role in OCT imaging by 
inducing dynamical changes in speckle patterns [4]. We 
hypothesize that OCT speckles originating from the areas 
of the same tissue type/condition (e.g., healthy dermal 
cellular structures) will behave synchronously in time with 
certain degree of synchronization. Analogously, degrees 
of synchronization of speckle patterns from areas of other 
tissue types/conditions (e.g., blood vessel or melanoma 
tumour cells within the dermal layer) will be different, thus 
providing an alternative contrast mechanism derived from 
conventional OCT images.

The concept of synchronization, an interesting and 
fundamental property of dynamic systems, was first 
described by Christiaan Huygens who noticed “an odd 
kind of sympathy” of coupled clocks and reported his 
observations to the Royal Society in the XVII century 
[18]. The classical concept of synchronization considers 
adjustment of rhythms of oscillating objects due to their 
coupling strength in terms of amplitude, frequency, and 
phase [19]. The interactive behaviour of complex systems 
that is often called “chaotic synchronization” [20] refers 
to a number of different phenomena [21] such as a 
transition to identical oscillations in coupled subsystems 
(complete synchronization of chaos), instantaneous 
phase locking (phase synchronization), basic frequency 
locking (frequency synchronization), deterministic 
relationship between the dynamics of oscillators 
(generalized synchronization), and others. For each of 
these phenomena, one can separate cases of full and 
partial synchronization.

Synchronization theory has been widely applied to the 
analysis of various biological signals. Newly developed 
methods for detection/quantification of synchronized 
behaviour, added to time series analysis for estimation 
of amplitudes, phases, and frequencies from biomedical 
data [e.g., 22], provide new insights into the complex 
dynamics of living systems. Detecting resonant 
oscillations in arterial blood flow at several characteristic 
frequencies [23], diagnosing kidney malfunctionality by 
estimating synchronization in renal cortex dynamics [24], 
recognizing patterns of rhythmic and chaotic synchronized 
neural activity [25], synching organ response to periodic 
and chaotic external excitation (e.g., pacemakers [26] 
and implantable defibrillators [27]) — these are a few 
examples of applying synchronization theory research 
to clinical practice. Motivated by the novelty and 
successes of this approach, here we apply one of the 
synchronization theory methods [28, 29] (initially used 
to identify chaotic signals [30] and to study the electrical 
activity of human brain [31]) to OCT. The developed 
synchronization metric is tested on tissue mimicking 
phantom with controlled biophysical/optical properties. 
The potential of this approach to differentiate tissue 
types and provide additional contrast for in vivo tissue 
OCT imaging is demonstrated with imaging the cervical 
cancer tumour grown within a mouse dorsal skin window 
chamber model.

In order to analyse temporal and spatial speckle 

patterns in complex dynamical systems such as living 
tissue, we first quantify their interconnection information 
content in the symbolic way through the mutual 
information (MI) metric. Consider intensities x1 and x2 of 
two adjacent speckle pixels at the same depth in an OCT 
image (Figure 1 (a)) as stochastic signals evolving in time 
(Figure 1 (b)). Mutual information MI12 between them is 
defined as:
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where p1(Xk) is a probability that variable x1 takes the 
value Xk, while p12(Xk, Xm) is a joint probability of fulfillment 
of simultaneous equalities x1=Xk and x2=Xm, and N is the 
number of quantization levels.

MI may also be calculated through Shannon [32] and 
conditional [33] entropies:

MI12=H(x2)–H(x2|x1),                         (2)

where H(x2) is Shannon entropy of x2:
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and H(x2|x1) is a conditional entropy, calculated from x2 
signal with the value of x1 is defined:
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Here p2(Xm|Xk) is a probability that x2 takes value Xm if 
x1=Xk. From distribution of states of x1 and x2, conditional 
and Shannon probabilities are calculated as schematically 
shown in Figure 1 (c) and (d), and then MI12 is calculated 
according to (2).

MI12 characterises the degree of interdependence 
between the stochastic processes of speckle pattern 
temporal changes. As implied by Eq. (2), it varies 
from zero for independent changes, to H(x2) for 
deterministically dependent ones. Normalizing MI to its 
maximum value yields the index of synchronization μ 
between the speckle pixel intensities:
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(5)

When OCT speckle pixels x1 and x2 intensities are 
strongly inter-dependent, their level of synchronization μ 
is close to unity. In the case when x1 and x2 are completely 
independent, their time series are non-synchronized 
(zero degree of synchronization) and μ is equal to zero. 
In intermediate cases when x1 and x2 demonstrate partial 
synchronization, the degree of synchronization assumes 
values between 0 and 1.

In the context of in vivo tissue imaging, (5) will likely 
approach unity in regions with relatively slow processes 
(e.g., skin). On the other hand, in dynamic regions 
areas where pixel intensities change rapidly in a chaotic 
unpredictable manner, µ is expected to be ~0 with certain 
degree of error depending on the number of analysed 
data points. Between these two extremes, index of 
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synchronization can provide additional information about 
specific tissue dynamics depending on its mutual image 
speckle behaviour. Note again that µ differs from the 
“conventional” single-pixel temporal decorrelation (as 
quantified by the auto-correlation function analysis), 
in that it reports on mutual temporal behaviour of two 
neighbouring pixels; as such, its values may be high or 
low somewhat independent of the single-pixel temporal 
dynamics.

Materials and Methods
Phantom preparation. First experimental phantom 

consisted of a transparent 600 µm inner diameter Teflon 
microtube immersed in water and filled with a 1% water 
suspension of 0.96 µm polystyrene microspheres (Bang 
Laboratories Inc., USA) and driven by a syringe pump 
(Model NE-4002x; New Era Pump Systems Inc., USA) 
at a flow rate of 0.86 mm/s. This phantom system was 
used to test the methodology under the best controlled 
conditions and parameters.

The second phantom was constructed to mimic 
biological tissue with a blood vessel in it. It consisted of 
the same diameter Teflon microtube imbedded in near-
solid scattering medium (mixture of 1% agarose gel and 

1% Intralipid) and is filled with stationary or flowing blood 
collected from mice. After preparation, phantom was 
cooled down for two hours at 4°C before OCT imaging. 
This time period ensured that agar + Intralipid scattering 
medium was not completely solidified, mimicking tissue 
biomechanical properties.

Mouse tumour model. For in vivo measurements, 
cross-sectional OCT images were taken from healthy skin 
and adjacent cervical cancer tumor grown within a dorsal 
skin window chamber in NRG (NOD-Rag1null IL2rγnull) 
mice. NRG mice is an immune-compromised hairy strain 
[34] with eliminated T-cells and radio/chemotherapy 
resistance, routinely used for the establishment of 
humanized tumour models for in vivo assessment of 
anticancer therapies. Human ME-180 cervical cancer 
cells were cultured in RPMI 1640 medium supplemented 
with 2 mM L-glutamine, 10% fetal bovine serum, and 
1% penicillin-streptomycin (Gibco BRL, USA) at 5% CO2 
and 37°C. ME-180 tumors were grown by injection of 
2.5·105 cells prepared in 10 μl of 1:1 PBS:Matrigel (BD 
Biosciences, Canada) solution into the dorsal skin of 
seven-week-old NRG mice (Jackson Labs, USA) using 
a 30G needle. Titanium dorsal skin window chamber 
surgery was performed 2–3 weeks post injection after 
the tumour reached ~5 mm diameter. OCT imaging 
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Figure 1. Schematic of the synchronization algorithm
(a) Several consecutive OCT images of agar phantom obtained from the same location, indicating two pixels of neighboring 
speckles (labeled red and blue dots) chosen for analysis. (b) Time series of x1 and x2 pixel intensities. (c) Histograms of h(x1) and 
h(x2) intensity distributions; note that the count in each square is equal to number of horizontal signal crossing at that intensity, with 
corresponding change in square shading level for better visualization (d). Calculation of conditional, non-conditional probabilities 
and entropies. p2(Xm|Xk) is a probability that variable x2 takes the value Xm if x1=Xk. p1(Xk) is a probability that variable x1 
takes the value Xk and p2(Xm) is a probability that variable x2 takes the value Xm. H(x2) is Shannon entropy of x2, H(x2|x1), is a 
conditional entropy calculated from x2 signal if the value of x1 is defined. (e) Resulting parametric image, with µ values from 0 (no 
synchronization) to 1 (full synchronization)

x1
x2
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was performed after a recovery period of five days post 
window chamber installation. Mice were anesthetized with 
a mixture of 80 mg/kg of ketamine and 5 mg/kg of xylazine 
and placed on a mouse restrainer [35] with built-in 37°C 
heating element to prevent motion artifacts and maintain 
physiological temperature during imaging procedures as 
shown in Figure 2. All animal procedures were performed 
in accordance with the Animal Use Protocol approved by 
the University Health Network Institutional Animal Care 
and Use Committee in Toronto, Canada.

OCT instrumentation. Imaging was performed 
using a fiber-optic swept-source OCT system based on 
Mach–Zehnder interferometer similar to that described 
previously [14] and schematically shown in Figure 3. 
Briefly, a 36 kHz short cavity laser source with a polygon-
based tunable filter and wave length centered at 1310 nm 

Figure 2. OCT imaging of NRG mouse with cervical 
cancer tumour grown within a dorsal skin window 
chamber

Figure 3. Schematic of the swept-source fiber-optic OCT system 
based on Mach–Zehnder interferometer
Black lines represent fiber-optics, red lines represent free-space optical 
paths. PC: polarization controller; D: photo-detector; DB: dual balanced 
photo-detector; C: collimating lens, L: focusing lens; FBG: fiber Bragg 
grating; MZI: Mach–Zehnder recalibration interferometer

had a sweeping range of 110 nm. The axial resolution (in 
air) of the system was ~8 μm and average output power 
of 40 mW. Data was sampled (ATS9350; AlazarTech, 
Canada) with the external clock signal derived at 
equidistant wavenumber intervals within the sweeping 
range. Each sweep was triggered by the signal of a fiber 
Bragg grating centered at 1255 nm and trigger signal 
detected with a 125 MHz photodetector. An OCT signal 
recalibration was performed with a standard Mach–
Zehnder recalibration interferometer to generate linear 
k-space data from the raw data sampled with a 125 MS/s 
data acquisition card. Samples were illuminated through 
a collimated (C) single mode fibre with a lens (L) working 
distance of 40 mm. The total optical power incident on 
the sample was 4.6 mW.

The reference arm mirror was illuminated through a 
fiber collimator. Two fiber circulators were used in both 
the reference arm and sample arm to redirect the back-
reflected light to a 50/50 fibre coupler. In order to match 
the polarization state of the two arms, two polarization 
controllers were used for adjustment. A 150 MHz 
(PDB450C; Thorlabs, USA) dual balanced photo-detector 
was used to detect the output signal from interferometer. 
Prior to Fourier transformation, the data set was zero 
padded to 1024 points.

OCT speckle synchronization and relationships to 
decorrelation times. Post-processing of OCT images 
was performed using Matlab software (MathWorks, 
USA). Speckle temporal synchronization was evaluated 
via the algorithm described in Figure 1 and Eq. (5). 
A region of interest (ROI) was chosen in each OCT image 
consisting on tens of pixels that form image speckles as 
schematically shown in the left square panel of Figure 4. 

Each square panel in the figure represents 
the same ROI, different panels showing the 
schematic selection of the two speckles x1 and 
x2 selected for the synchronization analysis. 
Index of synchronization μ was estimated for all 
pairs of ROI speckle pixels (red and blue dots 
represent a pixel pair in each panel of Figure 4) 
and then averaged to get a single number for 
this ROI. A gap of one pixel within each pixel pair 
insured that analysed pixel intensities were not 
detected within the same resolution element of 
the system.

Autocorrelation function (ACF) analysis 
was also performed to determine speckle 
decorrelation times, a benchmark approach for 
characterizing single-pixel sample dynamics, 
to be compared with the pair-of-pixels 
synchronization results. Autocorrelation was 
considered as the correlation between intensity 
values Ii of the same pixel at times ti and ti+τ with 
increasing time delay τ:
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In the phantom studies, ROIs were chosen as shown in 
Figure 5 (a) in regions within the phantom body, and within 
the stationary or flowing liquid. ACFs were computed 
for each pixel in the chosen ROIs and then averaged. 
In order to compare ACF’s decay with the new speckle 
synchronization metric µ, index of synchronization μ was 
calculated for the same ROIs. Decorrelation times for the 
chosen ROIs were estimated at 1/e level.

For tissue imaging, functional speckle variance OCT 
[15] was used for in vivo microvasculature detection (to 
select one of the synchronization ROIs within a big blood 
vessel). OCT images were taken over a 6×6 mm field of 
view with 800 A-scans per frame and a gate length of N=8 
(number of sequential same-location B-scans), to enable 
inter-frame comparison required for speckle variance (SV) 
OCT analysis. The inter-frame intensity variance from 
the same spatial location was calculated, with the blood 
vessels contrast arising from differences in time-varying 
speckle properties at each pixel:

N
zx zxt zxt

I I
N =

= −∑
2

1

1SV ( ) ,
                        

(7)

where N is the number of OCT B-scans acquired at the 

same spatial location within a tissue volume, Izxt is the 
intensity of the (z, x)th pixel of the t-th B-scan, z is the axial 
coordinate, x is the lateral coordinate and zxI  is the mean 
intensity of i pixels from N consecutive B-scans. Obtained 
vascular map was then depth-encoded with green-
yellow-red-grey-black colour map (256 colour gradations, 
green = top tissue layers just below the glass coverslip, 
black = deepest tissues).

Results and Discussion
We first compare ACF and index of synchronization 

for selected ROIs in phantom with controlled optical 
properties based on polystyrene microspheres. The 
absorption of polystyrene is negligible in near infrared 
range [35], thus scattering is the main determinant of 
light transport in this phantom model. Assuming that the 
scattering volume is defined by the Gaussian profile of 
the illuminating laser beam and the system’s coherence 
length [36], there would be a large number of identical 
particles within the resolution element of the system. 
In other words, each analysed pair of pixel intensities 
within the polystyrene suspension ROI (see Figure 4) 

Alternative Contrast Mechanism in Optical Coherence Tomography: Temporal Speckle Synchronization Effects

Figure 4. Pixel pairs choice from ROI of OCT structural image for analysis of their temporal synchronization
μ was estimated for all pairs of ROI speckle pixels (red and blue dots represent a pixel pair in each panel) and then averaged to 
get a single number for this ROI. A gap of one pixel in between insured that analysed pixel intensities were not detected within the 
same beam waist. Grey near-oval shapes represent speckle pattern in OCT structural images
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Figure 5. Water phantom with immersed 0.6-mm-diameter microtube filled with 1% polystyrene microspheres suspension:
(a) OCT cross-sectional image of the phantom with microtube filled with stationary suspension; (b) averaged autocorrelation 
function for chosen ROIs labelled in (a) with green (microtube wall) and red (polystyrene microspheres) rectangles; (c) averaged 
index of synchronization μ for chosen ROIs



44   СТМ ∫ 2018 — vol. 10, No.1 

biophotonics in cancer research

is expected to represent the pair of averaged scattering 
events from many particles of same size and (spherical) 
shape.

Figure 5 (a) shows the OCT cross-sectional image 
of the phantom with microtube filled with stationary 
suspension. ROIs were selected within the microtube wall 
(green rectangle), and within the microtube lumen for the 
microspheres suspension (red rectangle — both stagnant 
and flow conditions examined). ACF analysis (Figure 5 
(b)) shows that microtube wall pixels (green curve) 
decorrelate much slower than stationary (blue curve) 
and flowing (red curve) suspension with decorrelation 
times of the latter yielding 3.3 and 1.5 ms at 1/e level, 
respectively. The faster decorrelation in the presence of 
flow makes sense and has been previously reported by 
several groups [37–39]. We thus note that flow conditions 
do make a difference, and all ACF curves tend to zero 
with increasing time as expected.

Interestingly, as shown in Figure 5 (c), calculated 
speckle synchronization indices for the same ROIs 
demonstrate different trends. (1) μ does not tend to 
zero with time, but rather asymptotes to finite levels in 
different phantom regions (~0.84 level for microtube wall; 
0.17 for stationary and 0.11 for flowing suspensions); 
(2) the time scales are much longer, compared to ms-
range ACFs numbers; it takes several seconds for μ to 
stabilize; (3) the 1/e times are now ~0.5 s for both no-flow 
and flow regimes. (1) and (2) are likely the direct result 
of the defining calculation of µ (Eq. (5)), and as such 
these results are not surprising. However, the finding 
(3) that µ values are very similar for both no-flow and 
flow regimes is both novel and unexpected.  We do not 
have a satisfactory explanation for this but posit that is 
has something to do with the large number of identical 
symmetrical scatterers being interrogated within the two 
speckle spots of the OCT scattering volume. Unevenly 
shaped scatterers like red blood cells (RBC) in tissue will 

likely exhibit a larger difference in μ values for stationary 
versus flowing regimes.

To test this conjecture, we turn to our second phantom 
system, comprised of agar (to mimic biological tissue) 
containing an embedded microtube filled with blood. 
Analogous to Figure 5, Figure 6 (a) shows OCT cross-
sectional images of the phantom with microtube filled with 
stationary blood. Agar and blood ROIs were chosen as 
indicated in (a). ACF analysis (Figure 6 (b)) shows that 
while agar pixels decorrelate within ~160 ms, stationary 
and flowing blood decorrelate much faster (~20 and 
4 ms, respectively), which is in agreement with previously 
reported measurements [39]. With increasing time, ACFs 
tend to approach zero as in the previous experiment. 
Here slower signal decorrelation times for blood as 
well as the higher ratio of no flow/flow decorrelation 
times (20/4=5 for blood compared to 3.3/1.5=2.2 for 
polystyrene microspheres) were detected. The observed 
decrease in decorrelation times, as pointed out above, 
may be due to the difference in shape; however other 
factors such as size and concentration of RBC are also 
different compared to microsphere experiments. Although 
symmetric microspheres can only cause scattering 
changes by translation [38], the more irregularly shaped 
RBCs have translation plus rotation as their signal-
changing mechanisms, thus their decorrelation times 
should be faster. However, RBCs are larger than the 
measured microspheres, which would yield slower ACF 
times (both for stagnant and flow regimes). Clearly then, 
there are many competing factors at play, and these 
preliminary results and their interpretation require further 
research.

As in previous phantom case, in contrast to the faster 
decaying ACFs, the characteristic times for µ to approach 
its asymptotes did not change significantly. As seen 
from Figure 6 (c), it took nearly 3.5 s of data collection 
for agar synchronization index to stabilize at ~0.66 level 
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Figure 6. Agar phantom with embedded 0.6-mm-diameter microtube filled with blood:
(a) OCT cross-sectional images of the phantom with microtube filled with stationary blood; (b) averaged autocorrelation function 
for chosen ROIs labelled in (a) with black (agar) and red (blood) rectangles; (c) averaged index of synchronization μ for chosen 
ROIs
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(similar to microspheres suspensions), and t>3 s were 
also needed for flowing and stationary blood to approach 
“stable” values. As conjectured, μ values for irregularly 
shaped RBC now do exhibit a significant difference 
between flow and no-flow regimes (~0.15 and 0.34, 
respectively). Clearly the shape of the flowing scattering 
particles is important, demonstrating: (a) diffusion 
only (no-flow) regime with relatively slow pseudo-
random changes in signal that retains synchronicity 
and thus yields higher μ; and (b) diffusion plus flow 
regime with faster and less synchronized changes 
in signals and hence lower μ. This μ sensitivity to flow 
and no-flow regimes may be beneficial for functional/
blocked blood vessels differentiation and is currently 
under consideration in our on-going in vivo studies [40]. 
Results for significantly longer times (up to minutes, 
data not shown) indicated almost no changes in μ once 
it stabilized at levels mentioned above. Such behaviour 
suggests its different nature from the single-pixel signal 
correlation (ACF) techniques. Indeed, this new method 
provides information about mutually-dependant two-pixel 
rhythmic changes in time, rather than time-dependent 

similarity in speckle intensity from a given single speckle 
(auto-correlation).

In the in vivo experiment, cross-sectional OCT images 
were taken from skin and adjacent cervical cancer tumour 
in a window chamber mouse model. Figure 7 (a) shows the 
white light photograph of the window chamber where skin, 
tumour, and big vessels were approximately visualized. 
Using OCT in speckle variance mode, we obtained 
the depth-encoded vasculature map and chose a slice 
of interest as indicated in Figure 7 (b), such as to have 
skin, tumour, and big vessel lumen in one cross-section. 
Vessel size (0.2 mm diameter) was chosen for its blood 
flow volume to be comparable with the microspheres and 
tissue-mimicking phantom flow volumes. Three ROIs are 
labeled with rectangles within the OCT structural image 
in Figure 7 (c) (blue  =  skin, red  =  vessel lumen, black = 
tumour). Blood, tumour and skin decorrelation times were 
measured using ACF (Figure 7 (d)) to be <1 ms, 480 ms 
and 830 ms, respectively. These numbers reflect the fast 
blood flow velocity within the vessel of such a diameter 
[41] and higher metabolic activity of tumour cells compared 
to skin cells in vivo [17].
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Figure 7. Initial testing of the temporal speckle synchronization method in vivo in a window chamber mouse tumour 
model:
(a) white light photo of the window chamber where skin, tumour, and big vessels could be differentiated; (b) depth encoded 
vasculature of the area shown in (a), showing the location of the selected depth slice for synchronization analysis; (c) OCT 
cross-sectional “slice of interest” with labelled ROIs corresponding to skin (ROI1 — blue rectangle), blood vessel (ROI2 — red 
rectangle), and tumour (ROI3 — black rectangle); (d) averaged autocorrelation function for chosen ROIs; (e) averaged index of 
synchronization μ for chosen ROIs. Asymptotic μ values were 0.74 for the skin, 0.45 for the tumour, and 0.12 for the blood at t=8 s
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Similar to both phantom experiments, Figure 7 (e) 
shows that index of synchronization μ stabilizes with 
time (8 s time period is shown) to ~0.74 for  skin, 0.45 
for  tumour, and 0.12 for blood. Comparing these in 
vivo tissue findings to phantom results, μ value for skin 
was higher than for the agar at t=3.5 s (0.78 vs 0.66), 
potentially due to difference in the stiffness of the skin and 
incompletely solidified agar phantom. Synchronization 
of pixels within the blood vessel was close to μ value 
for the blood in the microtube at t=3.5 s (0.15 vs 0.16), 
which is reasonable considering their comparable flow 
volumes and similar compositions. Importantly, μ values 
for two tissue types (skin and tumour) were detected to be 
significantly different (0.74 vs 0.45), suggesting the utility 
of this approach for tumour/normal tissue differentiation. 
Certainly comparing the results of the two types of 
temporal analysis — single-pixel temporal decorrelation 
seen in Figure 7 (d) and mutual temporal behaviour of 
two neighbouring pixels seen in Figure 7 (e) — we see 
the latter providing much greater contrast ranges for the 
different tissue types in vivo.

In summary, one-dimensional M-mode analysis shows 
the potential of the reported synchronization metric to 
provide a novel contrast derivable from conventional OCT 
structural images. In phantoms and in in vivo tissue, we 
provide preliminary data demonstrating its dependence 
and sensitivity to size/shape/movement of the correlated 
scatterers within the OCT interrogation volume. Some 
preliminary interpretations of the synchronicity trends 
and value levels are provided, but further work is needed 
to fully interpret and understand the obtained results. 
We are also currently implementing a two-dimensional 
version of the presented synchronization algorithm, to 
enable a parametric 2D µ image of the interrogated 
tissue. Challenges include maintaining a reasonable 
resolution while ensuring sufficient statistics within 
the ROI for µ estimation, optimal temporal-geometric 
choices for pair synchronization analysis and sufficiently 
long measurement time course/number of “points”/
inter-point temporal spacing to enable unambiguous µ 
determination. Potential solutions currently being explored 
include oversampling the original OCT images and faster 
data acquisition using OCT with 200 kHz scanning rate or 
higher. Results will be reported in a separate forthcoming 
publication.

Conclusion
This study introduces temporal synchronization 

formalism to OCT imaging and presents preliminary 
experimental results from phantoms and in vivo 
tumour xenografts. A novel functional method based 
on speckle temporal synchronization was developed, 
providing novel contrast derivable from conventional 
OCT structural images. Speckle synchronization was 
compared with the more common auto-correlation 
analysis to demonstrate its different nature. Initial in vivo 
experiments showed that the reported metric is sensitive 

to tissue type/pathology, thus potentially providing a 
tool for tumour segmentation from surrounding normal 
tissues and its quantitative evaluation. We are currently 
working on further interpretation of the presented 
data, and implementing a 2D version of the presented 
synchronization algorithm, to generate parametric 
µ maps and explore the resulting contrast features. 
Future work will also examine the generalizability of 
these results in other preclinical in vivo models, and 
explore the optimal data acquisition parameters for 
fast and accurate 3D volumetric imaging suitable for 
synchronization analysis.
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