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Materials for Bone Grafting and Spinal Fusion

Introduction

In recent years, the number of musculoskeletal 
disorders has been increased. In a considerable number 
of those cases patients can benefit only from surgical 
interventions applying various types of fusion. Even 
with the innovative medical technologies, the number of 
unsuccessful outcomes in these patients remains high 
because of postoperative pseudo-arthrosis or a failure of 
the fixation device [1]. The next most common group of 
diseases that require bone grafting are skeletal injuries, 
cancer, and musculoskeletal infections [1–3]. Resulting 
from a pathological process or a traumatic injury, bone 
defects need to be replaced with appropriate materials 
to restore the supportability of the damaged segment [1]. 
Today autologous, allogeneic, and xenogeneic grafts, as 
well as alternative artificial substitutes, are used in bone 
grafting surgery.

Bone autoplasty remains the gold standard of 
treatment, since only autografts have the properties 
required for the most effective osteointegration [4, 5]. 
However, the use of autografts is limited due to the 
inability to obtain a large amount of autologous material 
without complications [5]. For example, in patients with 
osteoporosis, the quality of autografts is not high; and 
negative consequences of such interventions have been 
reported [6].

An alternative to bone autoplasty is the use of 
allogeneic and xenogeneic grafts. Their most obvious 
shortcomings include the development of a cell-

mediated immune rejection or some accidental 
contamination with infectious agents [5, 7]. In addition, 
these grafts are not capable of stimulating osteogenesis 
and osteoinduction [5].

The existing restrictions in using allogeneic and 
xenogenic grafts arouse an increasing interest in 
materials of synthetic and biological origin. Some 
of recently developed materials have a complex 
internal architecture (imitating the trabecular structure 
of the cancellous bone); they promote migration, 
adhesion, proliferation, and differentiation of osteoblast 
precursors. On the other hand, these materials still 
need further improvement to ensure the optimal graft 
osseointegration.

The disadvantages of the bone-substituting materials 
stimulated the emergence of more ambitious strategies, 
including bone tissue engineering, combined with cell 
and growth factors technologies [8–10].

To assess the quality and performance of the implants, 
imaging modalities (X-ray, CT or MRI) are commonly 
used. This is primarily due to the fact that samples of 
the implant and the bone tissue are unavailable for 
histological examination in clinical studies. Therefore, the 
imaging techniques provide the major information on bone 
regeneration around the graft. The imaging, however, 
is unable to identify the thin connective tissue capsules, 
which separate the bone tissue from the implant surface, 
and which prevents implant stability. To assess the nature 
of osteogenesis and the direction of cell differentiation: 
e.g., whether it is going through the osteoblast production 
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and the formation of new bone tissue, or through the 
enchondral osteogenesis and the cartilage formation is 
also impossible by using the imaging techniques only. 
These processes of osteogenesis are characterized by 
different periods of regeneration and, undoubtedly, affect 
the velocity of the structural and functional recovery 
of the bone, which is of great practical importance [11]. 
The only reliable method for verifying the developing 
osseointegration in this case is a morphological study 
with a morphometric analysis of the bone-implant border 
but with no separating capsule [12–14].

It takes (on average) 6.6 months for the bone tissue 
to recover from a defect; this time range may become 
longer on the background of osteoporosis or endocrine 
disorder, which seriously compromise the treatment 
outcome. These arguments further rationalize the search 
for biocompatible materials that provide for effective 
reparative regeneration and transformation into the bone 
tissue.

Autografts

An ideal osteoplastic material should have the 
following properties: osteogenicity, osteoinduction, 
osteoconduction and the ability for osseointegration 
without forming a boundary capsule around the implant 
[5, 15].

Osteogenicity is the ability to form bone tissue from 
osteoblasts present in the graft or from progenitors 
differentiated into osteoblasts.

Osteoinduction — the ability to facilitate the formation 
of osteoblasts by inducing the differentiation of 
mesenchymal stem cells and their influx from the tissues 
of the recipient. Growth factors BMP-2, BMP-7, TGF-β, 
IGF, FGF, PDGF have these abilities [16].

Osteoconduction is the ability of a graft to become a 
resorbable matrix that favors the ingrowth of bone tissue 
and blood vessels from the graft-donor tissue boundary. 
These abilities of the graft are eventually manifested 
in osseointegration, i.e. the graft ingrowth into the 
surrounding bone tissue without forming a border-line 
connective tissue capsule; at the end, the graft will be fully 
incorporated into the bone structure of the recipient [5]. 

Obviously, only autografts have all the above qualities: 
they contain osteoblasts, i.e. the precursor cells that 
promote osteogenesis [9, 17]. The viable cells remaining 
in the autograft produce growth factors that stimulate 
the migration of these precursors, the vascular growth 
and the formation of a new bone (i.e., osteoinduction). 
Autografts support the cell and vessel growth and the 
subsequent restructuring and osteointegration. It is 
important that auto-bone is perfectly biocompatible 
and does not cause any immune rejection [18]. Iliac 
crest, radius, rib, or fibula are most frequently used as 
autograft sources [19–21].

Yet, autologous bone grafting is not without drawbacks, 
which limit its use. On the other hand, application of 
autografts is associated with certain drawbacks that limit 

the use of the discussed technology. Thus, autograft 
sampling is a rather traumatic surgical procedure that 
prolongs the operation time and is associated with the 
risk of additional complications. Among those reported 
are long-lasting pain at the donor site, hematomas, 
pelvic or radial fractures, injury of ilioinguinal nerve 
and cutaneous nerve of the hip, or the radial nerve, 
and inflammatory complications [22–24]. During spinal 
surgery, an autograft may partially lose its mechanical 
properties or will undergo resorption and migration 
from the recipient bone which, as a rule, requires later 
surgical revisions [25]. One of the main disadvantages 
of autologous bone grafting is the inability to obtain 
sufficient material to replace large bone defects [17].

Allografts and xenografts

With the shortcomings of the autologous bone 
grafting, alternative methods of treatment have been 
introduced: those involve allografts and xenografts. 

Allografts are made of osteoplastic material obtained 
from the same biological species as the recipient, 
whereas xenografts are made of bone tissue of a different 
species [26]. Using these materials in the form of ready-
made medical products helps resolve the issue of 
insufficient osteoplastic material for bone substitution [27].

The disadvantage of replacing bone defects with allo- 
and xenografts is the absence of living cells capable 
of osteogenesis, which makes these materials less 
osteoinductive [28]. There are additional risks of using 
these foreign materials for bone tissue replacement. For 
example, allografts may carry an infectious pathogen; 
and in the cases of xenografts, such an infection may 
be as dangerous as prion disease [26, 29–32]. Allografts 
and xenografts may have foreign antigens in their 
structure; those can provoke biological incompatibility 
and transplant rejection [28, 32].

It is known that osteointegration occurs in 5 stages: 
inflammation, revascularization, osteoinduction 
(differentiation of polypotent cells into osteoblasts), 
osteoconduction, and bone remodeling [9, 32]. During 
the second and third stages, the recipient organism can 
develop excessive sensitivity to allo- or xenoantigens. In 
this scenario, it is crucial what type of immune response 
develops in response to the sensitization: mediated 
by either Th1 or Th2 lymphocytes [7, 33]. The Th1 
lymphocytes produce TNF-β, IFN-γ, and IL-2 leading to 
the activation of macrophages. On the other hand, Th2 
lymphocytes produce IL-4, IL-6, and IL-10, which do not 
activate phagocytosis but promote osseointegration.

Macrophages are classified into M1 and M2 
depending on the type of receptors. The M1 
macrophages express CD68 and CD80 and produce 
a large number of pro-inflammatory cytokines (IL-12, 
TNF) that mediate the inflammation and the subsequent 
encapsulation separating the implant from the bone 
tissue. The M2 macrophages express CD163, stimulate 
Th2 lymphocytes, and produce IL-10 and TGF, thus 
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inhibiting the inflammatory response and stimulating 
bone tissue remodeling [7, 33]. Cytoplasmic proteins 
and nuclear antigens activate the immune response 
mediated by M1 macrophages and Th1 lymphocytes. 
Such an immune response leads to rejection of the 
bone-substituting material [34, 35].

To avoid graft rejection, various treatments reducing 
the impact of foreign antigens are used: for example, 
freezing or freezing with drying [32, 36–38]. There are 
other more effective ways to eliminate nuclear and 
cytoplasmic antigens. Triton X-100, EDTA, trypsin, sodium 
dodecyl sulfate and other reagents have been used to 
remove the cellular components [39–41]. However, these 
reagents can adversely affect the mechanical stability of 
the grafts and thus negatively affect the outcome of spinal 
fusion, since the support function of the transplant may 
be compromised [37, 39, 41, 42].

In an attempt to avoid complications associated 
with allografts, some authors used demineralized 
bone matrix (DBM); this material contains proteins 
that stimulate osteogenesis [43, 44]. Bone matrix is 
obtained by demineralization of bone tissue so that only 
an insignificant amount of calcified substances remain; 
this material is rich in type 1 collagen and growth factors 
[45]. The data on the efficacy of DBM in spinal surgery 
still vary due to its heterogeneity, especially with regard 
to the activity of growth factors [45, 46]. The advantages 
of DBM are sterility and low antigenicity [47–49]. 
However, DBM has a number of significant drawbacks: 
it can be allergic and has a poor mechanical strength. 
The latter factor does not allow using this material 
as a supporting implant; instead, DBM is used as an 
osteogenic additive [44, 50, 51]. 

When replacing large bone defects with various 
tissue-engineered structures, it is important to ensure 
proper trophism for adequate osseointegration. This is 
a critical stage of the entire technology, especially if the 
bone defect is filled with viable cells: these cells will die 
without an adequate blood supply. For example, cells 
located more than 200–500 µm away from the blood 
microcirculatory bed died during the experiment, and the 
bone matrix was replaced by fibrous connective tissue 
[52]. To ensure trophism in the area of bone grafting, 
an arteriovenous loop consisting of the artificially 
anastomosed arterial and venous vessels was proposed. 
This arteriovenous loop placed in the central part of the 
graft served as a source for axial vascularization, as a 
result of which a new capillary network was formed 
(internal vascularization). In combination with peripheral 
angiogenesis (external vascularization) these capillaries 
would provide an adequate blood supply and contribute 
to the survival of the implanted cells [53]. 

Materials of biological and synthetic origin

The drawbacks of autologous material, allografts and 
xenografts stimulated a research into synthetic materials 
that could become scaffolds for bone tissue replacement. 

Specific requirements such as osteoinduction and 
osteogenesis drew more attention to cell and tissue 
engineering [5]. In fact, the treatment of xeno- and 
allografts can be considered tissue engineering as well, 
but there are more innovative methods of bone tissue 
processing. The new materials used for this purpose 
are either biological (for example, collagen) or synthetic. 
Biological materials made of allo- or xeno-bones are 
osteoconductive, resorbable by osteoclasts within 4 
to 12 months and are gradually replaced with organ-
specific bone tissue (for allogeneic materials) or coarse-
fibrous connective tissue (for xenogeneic materials) [54]. 
For synthetic materials, osteoconductivity and stability of 
the chemical composition as well as geometric shape, 
structure, and rate of biological degradation are the 
major criteria of acceptance [4].

Biological materials. Among the materials of 
biological origin, collagen, chitosan, and alginate are 
most often used for bone tissue regeneration. The 
efficacy of collagen grafts having orderly arranged fibers 
has been shown together with their ability to proliferate 
and differentiate into osteoblasts [55]. Currently, 
collagen-based materials are mainly used as carriers of 
biologically active molecules capable of osteoinduction 
[16, 56]. Notably, grafts consisting solely of collagen 
lack sufficient strength and can hardly be helpful in 
bone grafting [5]. Aiming at improving the quality of 
collagen-based material, experimentation on a collagen–
elastin composite scaffold has been reported. In this in 
vitro study, elastin improved not only the mechanical 
properties of the graft but also stimulated the osteogenic 
cells differentiation [57]. Other composite materials 
based on collagen, calcium phosphate and mineralized 
collagen, resembling the biophysical properties of bone 
tissue have been studied as well [58, 59]. To facilitate the 
delivery of cells and osteoinductive molecules, materials 
based on cellulose and collagen or collagen and alginate 
were also proposed [60, 61].

Chitosan is approved for use as a hemostatic material; 
it is also considered promising for bone grafting. When 
depolymerized, chitosan produces oligosaccharides 
with antibacterial effects [62]. The material is stable and 
maintains its molecular structure at a neutral pH but 
gradually degrades at acidic pH values. Chitosan induces 
the proliferation of osteoblasts and mesenchymal cells, 
and also stimulates neovascularization [62]. Due to the 
positive charge of this polymer, it can effectively bind 
growth factor molecules that are negatively charged, and 
then gradually release them in an acidic medium [63]. 
Composite materials based on chitosan and calcium 
phosphate have already been created [63].

Osteoplastic materials of biological origin, such as 
Osteomatrix and Osteoplast, are available in the Russian 
Federation. Osteomatrix (LLC Konectbiopharm, Russia) 
is a composition of natural collagen and hydroxyapatite 
with affinity-bound sulfated glycosaminoglycan (sGAG) 
[64]. Osteoplast (NPK Vitafarm, Russia) consists of 
non-demineralized bone collagen of animal origin with 
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sGAG [65]. Thanks to the developed manufacturing 
technology, these biomaterials have collagen and the 
mineral structures almost fully preserved; it is no less 
important that they are completely devoid of antigenicity. 
After these biomaterials or their analogs are implanted 
in rabbits, an ectopic bone is formed and then colonized 
with bone marrow cells. Both angio- and osteogenesis 
are most pronounced with Osteoplast where a rapid 
maturation of new bone tissue occurs around the implant 
zone [66].

Synthetic materials. Recost, bioactive glass, 
polylactide, and polycaprolactone triol are among the 
most popular synthetic materials. Recost (Ikon Lab 
GmbH, Russia) consists of a prepolymer, a polyol as 
a curing agent, and calcium orthophosphate. At its 
final form, Rekost has a porous microstructure [67]. 
In experimental studies using Rekost-based bone 
cement [68], scientists from Kazan found that bone 
tissue gradually replaced the cement at early stages 
(7–14 days). Moreover, there was practically neither 
inflammatory reaction, nor formation of leukocyte-
necrotic masses, nor traumatic edema. In these 
conditions, the process of reparative regeneration 
develops rapidly, as evidenced by the transformation 
of the connective tissue directly into the bone (after 
6 weeks) with no cartilage formation (which often takes 
place during the bone healing). By week 12, coarse-
fibrous bone tissue with areas of the lamellar bone 
was observed in all animals; thus, the experimental 
defect became completely healed. The above results 
suggest that the Rekost bone cement is a bioinert 
and biodegradable regenerative material suitable for 
reconstructive plastic surgery.

Since their invention in 1986, calcium phosphate-
based materials have been widely used for bone tissue 
augmentation and for osteoplastic surgery. They are 
easy for handling, perfectly fit the shape of a bone 
defect, and have excellent biological compatibility [44]. 
Conversely, the insufficient strength and excessive 
fragility restrict their implementation in bone replacement 
procedures. These synthetic materials have found their 
use as part of composite implants [44, 51]. Composite 
materials based on collagen and calcium phosphate 
mimic the mineralized bone matrix. Composite grafts 
based on synthetic polymers and calcium phosphate 
stimulate the differentiation of stem cells into 
osteoblasts, and also promote cell proliferation and 
synthesis of the bone matrix [69]. β-tricalcium phosphate 
ceramics has been used as a bone-replacing material 
for 25 years and is still considered the gold standard for 
the artificial bone [70]. This material is bioresorbable, 
biocompatible, and has good osteoconduction because 
of its porous structure [44, 71, 72]. The system of 
interconnected pores supports cellular colonization 
and accelerates vascularization [41, 73]. The pace of 
biological degradation is not always predictable; the 
process of bone resorption by osteoclasts lasts for 
13–20 weeks and results in a newly formed bone [74, 

75]. Nevertheless, β-tricalcium phosphate ceramics are 
inferior of cancellous bone in the mechanical properties, 
which must be taken into account before their use 
[47]. The disadvantages of β-tricalcium phosphate 
ceramics are partially compensated by the addition of 
hydroxyapatite. This combination contains two-phase 
calcium phosphate, which has the advantages of both 
components: slower resorption and greater mechanical 
strength (as in hydroxyapatite) and faster growth of a 
newly formed bone as compared with hydroxyapatite 
alone [76, 77].

Bioactive glass is a relatively new material, and it 
is currently approved for use only in dentistry. This 
material is composed of 45% silicon oxide, 24.5% of 
calcium oxide, 24.5% of disodium oxide, and 6% of 
pyrophosphate [78]. Bioactive glass is characterized by 
good biological compatibility, but it does not have optimal 
mechanical properties; therefore, it is most frequently 
used in combination with collagen and fibrin. Bioactive 
glass increases the mechanical strength of collagen 
implants [79]; these materials are osteoinductive and 
promote the differentiation of mesenchymal stem cells 
into osteoblasts [80]. In spinal fusion, the efficacy of 
bioactive glass is not that good as of autografts, but it has 
an antibacterial effect with the mechanism different from 
antibacterial drugs [81–83]. In this regard, it is likely that 
bioactive glass will be in demand for the replacement of 
bone defects in patients with osteomyelitis, especially on 
the background of bacterial drug-resistance [81].

Materials based on lactide, polyglycolic acid, and 
polylactide-co-glycolide are also considered promising 
options for bone substitution [44, 84]. Polyglycolic 
acid and polylactide are polymers with a crystalline 
structure. The copolymerization of these monomers 
reduces the degree of crystallization, which facilitates 
hydration and degradation of the polymer. By varying 
the ratio of monomers or the location of stereoisomers 
and by changing the molecular mass of the polymer, it 
is possible to obtain materials with reproducible and 
controlled parameters of biodegradation that occurs 
over a few weeks to several months [4, 85, 86]. Lactide 
is more hydrophobic than polyglycolic acid, and by 
increasing its content in the polymer one can slow 
down the pace of degradation. Over the past 30 years, 
a number of 3D porous scaffolds based on this polymer 
have been developed. 

Despite the relatively good biocompatibility, 
polylactide-co-glycolide-based materials have poor 
osteoconductive properties due to their hydrophobicity, 
which prevents cell adhesion and proliferation [78]. 
Polylactide-co-glycolide enhances the inflammatory 
response due to the release of acidic degradation 
products that can prevent cell colonization [4, 78]. 
Nevertheless, degradation products of this polymer 
are identical to natural metabolites and have no 
cytotoxic effect [4]. In addition, polylactide-co-glycolide 
grafts have suboptimal mechanical properties, which 
complicate using these materials if the graft is intended 
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to get used for mechanical support. In order to improve 
the osteoconduction, this material is often used in 
combination with other biopolymers — collagen, gelatin, 
or chitosan; also polycaprolactone is added to improve 
its mechanical properties [84, 87]. Ceramics and 
bioactive glass are also used for this purpose, besides, 
biologically active coatings are being developed [84].

Hefty majority of the synthetic materials do not have all 
the properties required for effective replacement of bone 
tissue [4, 5, 78, 79, 84, 88]. Their improvement is possible 
through the development of composite materials. It 
is known that materials based on calcium phosphate 
and collagen or calcium phosphate and polylactide-co-
glycolide have better mechanical properties and more 
evident osteoconductivity. In addition, the porosity, 
pore sizes, and their interconnection, the rate of graft 
degradation and its hydrophilicity also play important 
roles [84, 89]. The hydrophobicity makes it difficult for 
cells to form colonies in the graft; it interferes with the 
growing blood vessels and the newly formed bone 
tissue. In spine surgery, the supporting function of the 
graft is important. The resistance of a human cortical 
bone varies within 90–230 MPa, while the resistance 
of spongy bone to compression loads varies from 2 to 
90 MPa [89]. As the mechanical strength is insufficient, 
there is no effective load distribution between the graft 
and the stabilizing metal implants. Lack of mechanical 
support may cause an implant failure. On the other 
hand, an excessive hardness of the fixation device can 
slow down fusion and cause bone resorption around the 
graft [90]. The presence of pores provides the necessary 
osteoconduction and bioresorbability of artificial 
materials used for bone grafting. In an experiment with 
calcium phosphate materials, it was shown that macro-
pores with a size of 100–300 μm were the best fit for the 
growth of bone grafts [5, 89–92]. If the pores are smaller 
(less than 75 μm), those materials often intergrew 
with non-mineralized bone tissue or even fibrous bone 
tissue [89]. Notably, such correlations were not found 
in an experiment on porous titanium implants [93]; it is, 
therefore, possible that the optimal pore size is specific 
for each material and there is no universal optimal 
value. Materials with interconnected pores have the 
best properties; such pores favor bone tissue ingrowth 
[94]. On the other hand, materials with unconnected 
pores retain osteogenic cells for a longer time and thus 
facilitate active filling with newly formed bone tissue [89]. 
The pores contribute to the growth of bone tissue into the 
graft, but the porous structure of the material weakens 
its mechanical strength. To develop an effective material, 
a rational balance between porosity and mechanical 
strength is required [89].

When manufacturing the synthetic materials for 
bone grafting, it is important to produce materials with 
standardized characteristics (porosity, mechanical 
strength, period of degradation) [4, 5, 95]. In this respect, 
it is now thought that the standard porosity, standard 
composition, structure, and mechanical strength can 

only be achieved using 3D printing. Other previously 
used methods, such as sponge formation or material 
foaming are significantly less efficient [95]. Currently, 
the methods of stereolithography, fusion, selective laser 
baking and 3D printing are used to produce the bone-
substituting materials with individual characteristics 
[96–99]. Composite materials based on polymers, 
bioactive glass, tricalcium phosphate, and collagen 
have been created and introduced into practice [4]. 
With all the advantages of composite materials obtained 
with the additive technologies, the problem of graft 
vascularization remains unsolved, and therefore it is now 
proposed to combine these materials with either growth 
factors or cellular technology products.

Cell technologies

At the present time, it is obvious that the way to 
improve osteoinduction and osteogenesis in bone-
substituting materials goes via cell technologies. A key 
role in the regeneration of bone tissue is assigned to 
stem cells — a heterogeneous population of cells found 
in the blood, adipose tissue, umbilical cord blood, and 
bone marrow [100]. Stem cells migrate to the area of 
inflammation in response to secreted chemokines, 
and there participate in the regeneration process [101, 
102]. When applied stem cells modulate the immune 
response so to decrease the secretion of IL-1-β, IL-6, 
and TNF-α; stem cells do not affect the synthesis of 
IL-10 or IL-13 [103]. These cells inhibit the immune 
response (by suppressing the dendritic cells) and the 
function of natural killer cells so to ultimately reduce 
the immune response to the implant [104, 105]. It has 
been shown that, under hypoxic conditions or in the 
presence of pro-inflammatory factors in the area of 
injury, stem cell produce epithelial growth factor (EGF), 
fibroblast growth factor (FGF), and insulin-like growth 
factor (IGF), which slow down the cell apoptosis and 
stimulate neoangiogenesis [106]. The use of stem cells 
at the site of a fracture simulated in laboratory animals 
favored the bone callus formation due to increased 
osteogenesis and chondrogenesis [103]. Stem cells 
stimulate intramembranous osteogenesis, and also the 
TGF-β-induced enchondral ossification of the newly 
formed bone tissue [102]. Allogeneic stem cells facilitate 
spinal fusion without causing side effects [107, 108]. 
Hydroxyapatite and tricalcium phosphate grafts in 
combination with stem cells have been successfully used 
in the reconstruction of critical craniofacial defects of the 
long tubular bone in animals [108–120]. In the majority of 
countries, cell technologies have not been approved yet 
for clinical use, and therefore, there are only few reports 
on successful replacement of bone defect with stem 
cells in humans [108, 121, 122].

Despite the encouraging results, the question of 
efficacy and safety of stem cell techniques remains, 
and so remains uncertainty about possible immune 
responses to allogeneic stem cells [102]. There is 
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evidence that stem cell proliferation may become 
uncontrollable, and mesenchymal stem cells may 
become tumorogenic [123]. There are reports on 
sarcoma formation in the implant-receiving bed, 
presumably due to the suppression of antitumor 
immunity [124]. In this regard, studies on the stem cell 
differentiation into osteogenic or chondrogenic tissues 
are highly important [96].  

Growth factors

To improve osteoinduction in bone-replacing 
materials, growth factors have been tested; however, the 
obtained results are not uniform. In regard to the bone 
grafting, the following growth factors were studied: bone 
morphogenetic protein 2 (BMP-2), BMP-7, fibroblast 
growth factor (FGF), platelet-derived growth factor 
(PDGF), transforming growth factor beta 3 (TGF-β3), 
vascular endothelial growth factor (VEGF), and insulin-
like growth factor (IGF) [16].

The bone morphogenetic proteins are multifunctional 
growth factors, which have a significant effect on the 
growth, differentiation and apoptosis of various cell types, 
including osteoblasts, epithelial cells, nerve cells, and 
chondroblasts [125, 126]. Also, these proteins accelerate 
the differentiation of multipotent mesenchymal stromal 
cells into osteoblasts and chondroblasts, increase the 
osteocalcin synthesis, accelerate the collagen synthesis, 
increase the alkaline phosphatase activity, stimulate the 
synthesis and subsequent mineralization of extracellular 
matrix [127]. At present, 20 BMP types have been 
discovered, but only BMP-2, -4, -6, -7 have significant 
osteoinductive properties [128, 129]. In the presence of 
BMP-2 and BMP-7, osteogenesis is increased by 1.2–
21.0 and 1.1–95.0 times, respectively; yet the optimal 
concentrations of these growth factors are unknown: the 
range of doses used in these experiments varied from 
5 to 100 µg for BMP-2 and from 100 µg to 3.5 mg for 
BMP-7 [16]. It has been found that the action of BMP-2 
and BMP-7 is synergistic; upon their combination, 
osteogenesis is 1.5 times higher than the individual 
effects of these factors. With the simultaneous use of 
VEGF and BMP-2, bone tissue regeneration improves, 
since the first factor stimulates neoangiogenesis, and the 
second — osteogenic cell differentiation [16]. To date, 
various materials have been tested as BMP carriers, for 
example, demineralized bone matrix, collagen sponges, 
chitosan, gelatin, and hydroxyapatite. The carriers 
provide not only the delivery of BMP to the site of its 
action but also the preservation of osteoinducers in this 
site for a long period of time necessary for the formation 
of a new bone [62, 129, 130]. When planning a treatment 
using BMP, the recipient’s age should be considered, 
since it directly affects the biological activity of growth 
factors. The osteoinductive ability of BMP is reduced at 
least 2 times in elderly patients, therefore, higher doses 
are required to cause a noticeable stimulating effect on 
bone formation [131, 132].

In clinical studies on spinal fusion in the lumbar and 
cervical spine, the efficacy of recombinant human 
BMP-2 was superior to that of autografts [133–136]. 
Nevertheless, the 11% rate of complications was 
reported, the occurrence of malignant tumors was 
3.4%; in addition to that, immune reactions to BMP-2, 
cases of renal failure and supraventricular arrhythmias 
were also observed [137–139]. At present, BMP-2 is 
recommended for use in spinal surgery to accelerate 
the formation of the bone block. The clinical evidence for 
BMP-7 application is inconclusive [140].

Another growth factor — FGF-2 — also aroused 
some interest due to its potential to stimulate the 
regeneration of bone tissue. In experiments, his effective 
dose ranged from 0.01 to 200 μg and increased the 
osteogenesis 1.1–16.4 times in a dose-dependent 
mode [16]. The putative mechanism of action of FGF-2 
is neoangiogenesis and ossification, however, some 
authors believe that this fibroblast growth factor has a 
greater effect on chondrogenesis than on osteogenesis 
[16, 140, 141]. The effect of FGF-2 on osteogenesis is 
greater than that of FGF-1, but with a constant presence 
of the factor in the area of osteogenesis, its efficacy 
decreases. When BMP-2 and FGF-2 are combined, 
the efficacy of BMP-2 goes down: the fibroblast growth 
factor inhibits osteogenesis [16]. 

It is assumed that PDGF can promote regeneration 
of the bone tissue as a mitogen. It can act as a 
chemoattractant for stem cells and also stimulate the 
secretion of growth factors by macrophages [142–144]. 
PDGF enhances bone regeneration 1.4–2.4 times in the 
area of an experimental bone defect; the doses used 
in this case were 0.01–80.0 μg [16]. At high doses of 
PDGF, the bone density in some areas of osteogenesis 
decreased; also in some cases, no fusion of fractured 
bones occurred when PDGF and VEGF were combined 
[16]. With a combination of PDGF and BMP-2, the 
latter enhanced osteogenesis, presumably this factor is 
necessary for enchondral ossification [16]. Nevertheless, 
other data did not confirm the significant effect of PDGF 
on bone tissue regeneration [145].

TGF-β is one of the most important factors of 
osteogenesis, but its role is ambiguous. As a rule, its 
action facilitates the formation of cartilage followed 
by ossification. The effect of TGF-β3 alone intensifies 
osteogenesis by 1.75–3.0 times. Sometimes, the 
cartilage formation occurs with no increase in bone 
mass. In the combined use with BMP-2 or stem cells, 
the efficacy of TGF-β increased significantly: these 
combinations stimulated osteogenesis up to 5 times [16]. 
It has been shown that TGF-β1 enhances the synthesis 
of mRNA markers in osteoblasts and those of alkaline 
phosphatase in mouse stem cells, but inhibits the 
expression of osteocalcin [146, 147]. Its effects depend 
both on cell density and on the stage of differentiation; 
the effect is dose-dependent and has a two-phase mode 
[148–151]. A single exposure to TGF-β1 at a dose of 
1 ng/ml triggers the osteoblast differentiation, and a 
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second exposure inhibits the differentiation [152, 153]. 
The inhibition during the second exposure is mainly due 
to a decrease in the synthesis of IGF-1 [153]. By adding 
200 ng/ml of exogenous IGF-1, the synthesis of alkaline 
phosphatase in osteoblasts is restored, thus eliminating 
the suppression caused by TGF-β1 [153].

A significant factor of osteoblast differentiation, 
as well as of bone growth, is IGF-1. It is produced by 
osteocytes and mature osteoblasts, then deposited in 
the bone and released as it is resorbed. This cytokine 
does not cause osteogenic differentiation of stem 
cells but enhances the function of mature osteoblasts 
[153, 154]. IGF-1 is associated with the mechanic 
transduction in bone tissue [154]: thus, its synthesis 
goes up as an early response of bone tissue to the 
mechanical load. Hypersecretion of IGF-1 in transgenic 
mice leads to increased osteogenesis in response to 
mechanical stress [155–157]. In the absence of physical 
load, the addition of IGF-1 does not lead to increased 
osteogenesis [158, 159]. Damage to the IGF-1 gene 
in osteoblasts significantly reduces osteogenesis in 
response to mechanical stress [159]. The significance 
of this cytokine for bone grafting has been studied in 
animal experiments; IGF-1, together with PDGF, had a 
favorable effect on implant integration [160]. 

There are quite a few papers on using the VEGF 
cytokines for improving bone regeneration. In 
bone damage, necrosis and hypoxia are the major 
pathogenetic factors. VEGF is necessary for the 
formation of a normal vascular network in areas of tissue 
damage [161]. With the insertion of VEGF-containing 
implants in the bone defect, both vascularization and 
bone mass increased by 1.6–2.0 times [161]. On the 
other hand, there are reports that only angiogenesis 
but not bone mass is stimulated [16]. The likely cause 
of such a discrepancy is the kinetics of VEGF release 
from the carrier. Slow and prolonged release of VEGF is 
preferable; otherwise the formation of capillaries outside 
the vascular bed or the development of angioma during 
hyper-stimulation is possible [162].

The homologue of VEGF — placental growth factor 
(PlGF) — is also considered the factor of bone tissue 
regeneration. There is evidence of its role in four key 
bone repair processes. First of all, PlGF is necessary for 
the effective initiation of the inflammatory process and 
angiogenesis in response to bone damage. Secondly, 
it enhances the proliferation and differentiation of 
mesenchymal progenitor cells. Third, it stimulates 
the formation of cartilage indirectly via the matrix 
metalloproteinases. Fourth, PlGF is required for optimal 
remodeling of a newly formed bone [163]. PlGF is also 
known as an autocrine regulatory factor for stem cells. 
When secreted at low concentrations (20 ng/ml), PlGF 
stimulates the osteogenic differentiation; at higher 
concentrations (50 ng/ml), it induces osteoclastogenesis 
and angiogenesis. Those are the prerequisites for 
bone remodeling and repair [164]. In vitro studies 
demonstrated the development of chemotaxis in 

mesenchymal progenitor cells in response to PlGF [163, 
164]. Also, PlGF has been found to significantly enhance 
the osteoinductive effect of BMP-2 [165]. 

Perspectives of bone substitute  
material developments

Due to the high incidence of traumatic injuries and 
the prevalence of degenerative and inflammatory 
musculoskeletal diseases, the importance of bone 
grafting continues to grow. The above diseases often 
lead to temporary or permanent disability and negative 
socio-economic consequences [1, 2, 3, 55]. When 
replacing a bone defect, autoplasty remains the gold 
standard of treatment thanks to its optimal osteogenicity, 
osteoinduction, and osteoconduction, resulting in 
the best possible osteointegration [5]. With all these 
advantages, bone autoplasty has its limitations, primarily 
related to the traumatic procedure of tissue harvesting 
and the inability to obtain sufficient amount of material 
to replace large bone defects [51, 166]. Allografts and 
xenografts cannot compete with autografts in terms of 
osteointegration, as they actually represent just bone-
like matrices but contain neither growth factors nor living 
cells [5, 88]. In addition, using allogeneic and autogenic 
bones is associated with the risks of transmitting a 
dangerous infection or an antigen that can provoke an 
immunogenic graft rejection [51, 88].

These factors motivate the search for new solutions. 
By now, a large number of synthetic and biological 
materials have been proposed [5]. It is commonly 
accepted that the ideal material should have sufficient 
mechanical strength, hydrophilicity, and biological 
compatibility; besides, osteoinduction and osteogenicity 
are also important. In fact, none of the existing materials 
has the optimal combination of these qualities. 
Therefore, the development of composite grafts capable 
of combining the best qualities of several materials 
is considered the way forward [5, 167]. Another 
problem faced by the manufacturers is the medical 
need of implants with reproducible and standardized 
characteristics, such as the rate of biological degradation 
and the mechanical strength [167]. In addition, it is 
important to define the standard pore sizes that would 
enable the ingrowth of blood vessel and newly formed 
bone tissues [89]. Such materials are expected to be 
created with the help of additive technologies; and the 
successful examples of such experiments have been 
recently reported [4, 5].   

The physical properties, biodegradability and structure 
similarity of the existing materials are still insufficient 
for effective osseointegration. To improve their 
osteogenicity, cellular technologies based on stem cells 
have been introduced. According to the obtained results, 
this line of research is highly promising [1, 5, 106, 168]. 
For example, even a crude aspirate of autologous 
bone marrow enhanced the osteogenicity of the grafts 
and accelerated the bone formation [47]. Promising 
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results have been obtained with spinal fusion models 
and experiments on the replacement of bone defects in 
the cranial vault and long tubular bones. On the other 
hand, if autologous cells are planned to be used, then 
additional surgery is required to collect adipose tissue or 
bone marrow, which may limit this approach. Allogeneic 
stem cells have been found to be effective in bone tissue 
regeneration, but the immune response to these cells is 
the subject of study [102]. The risks of using the stem 
cell technologies — especially, their tumorigenicity — 
are widely discussed in the literature [123, 124]. An 
additional factor limiting the use of stem cells is the lack 
of regulations and a legal framework for their use.

In order to enhance the quality of osteoinduction, 
cytokines and growth factors have been tested. 
However, the published data failed to provide consistent 
evidence on that matter because the reported studies 
were designed and performed so differently that the 
results could be hardly compared [16]. It has been 
found that growth factors and cytokines are involved 
in multiple processes and their biological activities 
depend on the dose, the microenvironment and the 
stage of osteogenesis. A striking example of that notion 
can be seen from the effects on TGF-β and PLGF on 
osteogenesis [152, 153, 164]. The use of BMP-2 for 
bone tissue regeneration has been studied better, but 
there is no unequivocal evidence for its safety. The 
existing contradictions in the results indicate that we are 
just beginning the way to tissue technologies.

Conclusion
It is becoming commonly accepted that only a 

combination of the additive technologies, their composite 
biodegradable products, and the cellular and tissue 
technologies can result in the biologically relevant 
osteoinduction, osteoconduction, osteogenicity, and 
supportability. Despite the abundance of research and 
approaches, the tissue-engineered structures that 
optimally fit the medical requirements are yet to be 
found. Nevertheless, the knowledge accumulated in 
this area suggests that such developments are the most 
promising ways to reach the ultimate goal — obtaining a 
graft with tissue regeneration similar to the native bone. 
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