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Escherichia coli is recognized as a major food-borne pathogen of humans and animals world-wide. The strains of E. coli have become 
increasingly resistant to antibiotics, partly as a result of genes carried on integrons. 

The aim of the study was to investigate the association between the existence of integrons and antibiotic resistance in E. coli strains 
isolated from human and animal sources in the Alborz and Isfahan provinces of Iran. 

Materials and Methods. Twenty samples were collected from cattle and sheep at Isfahan province and poultry and humans at Alborz 
province. E. coli was isolated from these samples using standard biochemical and bacteriological techniques. Antibiotic resistance and 
sensitivity were determined using the Kirby–Bauer disk diffusion method. A duplex polymerase chain reaction was used to amplify the Int1 
and Int2 genes of class 1 and 2 integrons. 

Results. A total of 33 from 80 isolates (41.25%) contained integron-associated genes. Among these, 25 isolates (31.25%) harbored 
class 1 integrons; while 8 isolates (10.0%) contained class 2 integrons. Resistance to more than 6 antimicrobial agents was observed among 
the integron-positive strains.

Conclusion. Our findings showed that integrons were widely spread among E. coli isolated in the Alborz province. Thus, regular 
surveillance and monitoring of antimicrobial drug resistance in humans and animals in Iran should be performed and should include 
molecular screening for integrons.
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Introduction

Escherichia coli is a cosmopolitan bacterium existing 
either as a commensal or pathogenic to humans and 
various animal species [1–5]. This organism has been 
reported to be responsible for significant veterinary, 
public health and socio-economic concerns in various 
countries worldwide [6–8]. 

The indiscriminate, unauthorized and unsupervised 
administration of antimicrobials in human and animal 
therapy has been suggested to be a predisposition 
for the dissemination of resistance genes among 
bacteria. This abuse of antibiotics during cattle breeding 
constitutes a serious threat to human and animal health 
because of the high risk of the selection of antibiotic 
resistance genes in the microorganisms [8–9]. 

Antimicrobial resistance determinants are carried 
mainly by genetic components such as plasmids, 
transposons, and integrons. Several authors have 
associated the integrons and conjugative plasmids with 
the spread of the resistance determinants from [9–12].

Integrons are genetic structures containing a site-
specific recombination system that enables bacteria 
to acquire and express cassettes of genes that carry 
antibiotic resistance [13–15]. Integrons are transposition 
defective; however, they can be mobilized in association 
with functional transposons and/or conjugative plasmids 
[13]. They also contain a site-specific recombination 
system able to capture and express genes as gene 
cassettes [16, 17]. The essential components of class 1 
integrons are a) the 5’conserved segment (5’-CS) that 
includes the integrase gene, intI, which encodes the site-
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specific recombinase, b) the adjacent site, attI, that is 
recognized by the integrase and acts as a receptor for 
gene cassettes, and c) a common promoter region(s), 
Pant(P1) and/or Pant(P2), from which the integrated gene 
cassettes are expressed [18, 19]. The 3’conserved 
segment (3’-CS) located downstream of the integrated 
gene cassettes, usually contains a combination of 
the three genes, qacE1 (responsible for antiseptic 
resistance), sulI (implicated in the resistance to 
sulfonamides), and the open reading frame (orf5) whose 
function is currently uncertain [20].

Several studies have demonstrated the mechanism 
of clonal spread of resistant strains, transfer of 
resistance genes between bacteria living in humans 
and animals and the exchange of phylogenetic and 
genotypic characteristics [21]. The exponential increase 
and spread of antimicrobial-resistant bacteria are of a 
great concern because of the difficulty in treating the 
bacteria-borne infections. Such complications often 
result from rapid expansion of antibiotic-resistant genes 
carried by plasmids, transposons, and integrons [17, 
22–24]. Several studies have reported on widespread 
prevalence of integrons in clinical bacteria isolates [25–
28]. Therefore, the increased drug resistance of clinical 
isolates may be explained by the selective pressure of 
antibiotic and the widespread presence of integrons. 

To our knowledge, there is little information on 
the presence of integrons in E. coli isolates and the 
association between integrons and antimicrobial 
resistance. Therefore, the present study was performed 
to investigate the association between the existence 
of integrons and resistance to antimicrobial agents in 
E. coli strains isolated from human and animal sources 
in the Alborz and Isfahan provinces, Iran.

Materials and Methods
Study location and description. This study was 

conducted in two locations: the city of Karaj, located in 
the Alborz province, and the city of Zavareh, located in 
the Isfahan province of Iran. The Alborz province has 
2.413 million populations, and the Isfahan province has 
1.6 million populations. 

The present study was approved by the Ethics 
Committee of the Karaj Branch, Islamic Azad University.

A total of 80 samples were collected from cattle 
(n=20), sheep (n=20), poultry (n=20), and humans 
(n=20). Faeces were collected from apparently healthy 
people who willingly submitted their samples to the Amini 
Medical Laboratory located at the Alborz province. Large 

intestinal swabs were collected from randomly selected 
chickens bred in a privately owned breeding farm in Karaj 
city. Faeces were collected per rectum from randomly 
selected cattle and sheep managed in a privately owned 
livestock facility located in Zavareh city. No animal was 
hurt during sample collection in this study. 

Isolation of E. coli from samples. The faecal 
samples were inoculated into lauryl sulphate tryptose 
(LST) broth (Merck, Germany) followed by inoculation into 
EC medium (Merck) at 44.5°C, and then passaged on 
eosin methylene blue (EMB) agar (Merck). Colonies with 
metal shine were presumed to be E. coli isolates; these 
underwent IMViC test for confirmation [29].

Antibiotic susceptibility testing. Phenotypic 
antibiotic susceptibility was tested for by the Kirby–Bauer 
disk diffusion method. Padtan-Teb disks (Tehran, Iran) 
were placed on Mueller–Hinton agar plates according to 
the guidelines of the Clinical and Laboratory Standards 
Institute. The 11 antibiotic discs included ampicillin 
(AM) 10 µg, piperacillin (PIP) 100 µg, cefazolin (CZ) 
30 µg, streptomycin (SM) 10 µg, kanamycin (K) 30 µg, 
gentamicin (GM) 10 µg, neomycin (N) 30 µg, tobramycin 
(TOB) 10 µg, amikacin (AN) 30 µg, nalidixic acid (NA) 
30 µg, and sulfamethoxazole/trimethoprim (SXT) 
23.75/1.25 μg. For antimicrobial susceptibility testing, 
the inoculum of E. coli was homogenized with a sterile 
swab in sterile saline solution (0.85% NaCl) to adjust 
turbidity to match the 0.5 McFarland standards. These 
were then placed evenly on Mueller–Hinton agar plates. 

The plates were inverted and then incubated at 35°C 
for 18 h; the diameters of the growth inhibition zones 
were measured and compared with the standard chart 
and with the E. coli ATCC 25922 and Staphylococcus 
aureus ATCC 29213 as positive controls. Isolates with 
intermediate resistance were defined as susceptible; the 
isolates were considered multi-drug-resistant if they were 
resistant to at least three classes of antibiotics [30–32].

Amplification of integrons by PCR
DNA ex t rac t ion. Two colonies of each bacteria 

isolates were placed into a tube containing 100 µl 
of double-distilled water. Tubes were heated at 
100°C for 10 min, and then the cells were pelleted by 
centrifugation. The supernatant containing DNA was 
taken out and stored at –20ºC [29].

Duplex  PCR reac t ion  fo r  E .  co l i  i so la tes. 
All E. coli isolates were tested by multiplex PCR using 
previously described conditions and protocols [33]. Two 
sets of primers were used to amplify the 287 and 789 
bp fragments of the int1 and int2 genes respectively 
(Table 1). Duplex PCR reaction was performed in a 

T a b l e  1
Two sets of primers used in the multiplex PCR reaction

Target gene Forward primer (5’→3’) Reverse primer (5’→3’) Size (bp)
Int1 TCTCGGGTAACATCAAGG GTTCTTCTACGGCAAGGT 287
Int2 CACGGATATGCGACAAAAAGGT GTAGCAAACGAGTGACGAAATG 789
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25 µl reaction mixture, containing PCR buffer (10 mM 
Tris-HCl, 50 mM KCl, and 1.5 mM MgCl2, pH 8.7), dNTP 
(200 μM), a primer (0.4 μM), Taq DNA polymerase 
(1 U), and template DNA (2 µl). The PCR reaction was 
performed in a DNA thermocycler (Model CP2-003; 
Corbett, Australia) as follows: initial denaturation — at 
94°C for 4 min, 30 cycles of denaturation — at 94°C 
for 5 s, annealing — at 59°C for 10 s, elongation — at 
72ºC for 30 s and the final extension step — at 72°C 
for 5 min, followed by cooling at 4°C. PCR products 
were electrophoresed on 1.5% agarose gel containing 
ethidium bromide at 80 volts for 1 h.

Results
In this study, 33 of 80 E. coli isolates (41.25%) 

contained integron-associated genes. Among these, 25 
isolates (31.25%) harbored class 1 integrons. Class 1 
integrons were identified in the strains recovered from 
sheep (n=4), chickens (n=12), cows (n=1), and humans 
(n=8). Eight isolates (10.0%) contained class 2 integrons 
which were identified in the strains recovered from sheep 
(n=1), chickens (n=6), and humans (n=1) (see Figure). 

Most of the E. coli strains isolated from sheep, 
chickens, cows, and humans were resistant to 
piperacillin, tobramycin, amikacin, and gentamicin while 
a lower percentage showed resistance to cefazolin and 
nalidixic acid (Table 2). 

In sheep, class 1 integrons were detected in 
four sulfamethoxazole/trimethoprim-resistant E. coli  
isolates and class 2 integrons were detected in 
one sulfamethoxazole/trimethoprim-resistant E. coli 
isolate (Table 3). On the other hand, class 1 and 
class 2 integrons were detected in twelve and six 
multiple drug resistance E. coli isolates from chickens, 
respectively (Table 4). In cows, only class 1 integron 
was detected in an E. coli isolate with streptomycin and 
sulfamethoxazole/trimethoprim resistance (Table 5). 
In one of eight E. coli isolates from humans, class 1 
integrons and class 2 integrons were detected. Multiple 

T a b l e  2
Patterns of E. coli resistance to antibiotics

Antibiotics 
(concentration  

on disks)

Sources
Sheep
(n=20)

Chickens
(n=20)

Cows
(n=20)

Humans
(n=20)

CZ (30 µg) 6 9 0 8
AM (10 µg) 5 12 7 7
PIP (100 µg) 0 1 0 0
SM (10 µg) 9 13 17 19
TOB (10 µg) 0 5 0 0
SXT (23.75/1.25 µg) 4 11 2 9
AN (30 µg) 0 0 0 0
NA (30 µg) 0 15 2 6
GM (10 µg) 0 5 0 0
K (30 µg) 2 3 1 2
N (30 µg) 3 5 1 2

H e r e: CZ: cefazolin, AM: ampicillin, PIP: piperacillin, SM: 
streptomycin, TOB: tobramycin, SXT: sulfamethoxazole/
trimethoprim, AN: amikacin, NA: nalidixic acid, GM: 
gentamicin, K: kanamycin N: neomycin.

Detection of int1 and int2 genes in E. coli strains. Lane M, 
100 bp marker scale; lanes 1–6, positive strains

T a b l e  3
Types of drug resistance in E. coli from sheep 

Source 
(sheep) Int1 Int2 CZ AM PIP SM TOB SXT AN NA GM K N Antimicrobial 

resistance pattern
1 — — I I S R I S I S I I I SM
2 + — R I S I I R I S I I I CZ, SXT
3 + — R R I I S R I S S I I CZ, AM, SXT
4 — — I S S R I S I S I I I SM
5 — — I I S I I S I S I I I —
6 — — I I S R I S I S I R R SM, K, N
7 — — I I S R S S S S S S I SM
8 — — I I S I I S I S I I I —
9 + + I I S I I R I S I I I SXT
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The end of Table 3

Source 
(sheep) Int1 Int2 CZ AM PIP SM TOB SXT AN NA GM K N Antimicrobial 

resistance pattern
10 — — R I S R I S I S S S S CZ, SM
11 — — I S S I I S I S I I I —
12 — — R R S R S S I I I I I CZ, AM, SM
13 — — I I S I I S I S S I R N
14 — — R R I R I I S S S S S CZ, AM, SM
15 — — I I S I I S I S S S I —
16 — — I S S R I S I S S I I SM
17 — — I S I I I S I S S I I —
18 — — I R S R S S I S I I I AM, SM
19 — — R R I I I S I S I R R CZ, AM, K, N
20 + — I I S I I R I I I I I SXT

Total 4 1 R 6 5 0 9 0 4 0 0 0 2 3
S 0 4 16 0 4 15 2 18 8 4 2
I 14 11 4 11 16 1 18 2 12 14 15

N o t e: R: resistance; I: intermediate resistance; S: susceptibility. Drug abbreviations see Table 2.

T a b l e  4
Comparison of antibiotic resistance patterns in E. coli from chickens

Source 
(chickens) Int1 Int2 CZ AM PIP SM TOB SXT AN NA GM K N Antimicrobial resistance pattern

1 + + R R I R R R I R R I I CZ, AM, SM, TOB, SXT, NA, GM
2 + — R R S R I R I R R I I CZ, AM, SM, SXT, NA, GM
3 + + I S S I I R S R I I I SXT, NA
4 + — I I S I I S I S I I R N
5 — + I R S R I I S S S I S AM, SM
6 + — I R S R R R S R R I R AM, SM , TOB, SXT, NA, GM, N
7 + — R R S R I R S R S I I CZ, AM, SM , SXT, NA
8 — + I I S I S R S R S I I SXT, NA
9 — — R R R R S S S R I S I CZ, AM, PIP, SM, NA

10 — — I I S I I S I R S I I NA
11 + — R R I I R R I R R R I CZ, AM, TOB, SXT, NA, GM, K
12 + — I R S R R R S R R I I AM, SM, TOB, SXT, NA, GM
13 + + R R S R R R S R I I R CZ, AM, SM, SXT, NA, K, N
14 — — I S S R I S I R I I I SM, NA
15 + — I S I R I S I R I I I SM, NA
16 + — R R S R S R S R S R R CZ, AM, SM, SXT, NA, K, N
17 — — I I S R S S I R I I I SM, NA
18 + + R R S R S R S S S I S CZ, AM, SM, SXT
19 — — R R S I I S I S I R R CZ, AM, K, N
20 — — I I S I S S I R I S S NA

Total 12 6 R 9 12 1 13 5 11 0 16 5 3 5
S 0 3 16 0 6 8 10 4 6 2 3
I 11 5 3 7 9 1 10 0 9 15 12

N o t e: R: resistance; I: intermediate resistance; S: susceptibility. Drug abbreviations see Table 2.
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T a b l e  5
Comparison of antibiotic resistance patterns in E. coli from cows

Source
(cows) Int1 Int2 CZ AM PIP SM TOB SXT AN NA GM K N Antimicrobial 

resistance pattern
1 — — S I S R S R S R I I S SM, SXT, NA
2 — — S R S R S S S S S S S AM, SM
3 — — S I S R S S I S S I I SM
4 — — S I S R S S S S S S I SM
5 — — S R S R S S S S S S R AM, SM, N
6 — — S I S R S S S S S I R SM, K
7 — — S R S R S S S S S S I AM, SM
8 — — S I S R S S S S S S I SM
9 — — S I S R S S S S S S I SM

10 — — I I S R S S S S S S S SM
11 — — I R S R S S S S S S S AM, SM
12 — — S R S I S S S S S S I AM
13 — — S R S R S S S S S S S AM, SM
14 — — S I S I S S S S S S I —
15 — — S S S I S S S R S S S NA
16 + — I I S R S R S S S S S SM, SXT
17 — — I S S R S S S S S S S SM
18 — — S R S R S S S S S S I AM, SM
19 — — S I S R S S S S S S I SM
20 — — I I S R S S S S S S R SM

Total 1 0 R 0 7 0 17 0 2 0 2 0 0 3
S 15 2 20 0 20 18 19 18 19 17 8
I 5 11 0 3 0 0 1 0 1 3 9

N o t e: R: resistance; I: intermediate resistance; S: susceptibility. Drug abbreviations see Table 2.

T a b l e  6
Comparison of antibiotic resistance patterns in E. coli from humans 

Source
(humans) Int1 Int2 CZ AM PIP SM TOB SXT AN NA GM K N Antimicrobial 

resistance pattern
1 — — I I S R S S S S S S S SM
2 + — R R S R S R S S S S S CZ, AM, SM, SXT
3 — — I I S R S S S S S S S SM
4 — — R I S R S S I S S S I CZ, SM
5 + — I S S R I R S R I I I SM, SXT, NA
6 — — I I S R I S S S S S I SM
7 — — I I S R S S S S S S S SM
8 — + R R S I I R S S S S S CZ, AM, SXT
9 + — R R S R S R S R S S I CZ, AM, SM, SXT, NA

10 — — I S S R S S S S S S S SM
11 + — R R S R S S S S S S S CZ, AM, SM
12 + — I S S R S R S R I R S SM, SXT, NA, K
13 + — I R S R S R S R S S R AM, SM, SXT, NA, N
14 — — I I S R I R S S S S I SM, SXT
15 — — R I S R S S S S S S S CZ, SM
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Source
(humans) Int1 Int2 CZ AM PIP SM TOB SXT AN NA GM K N Antimicrobial 

resistance pattern
16 + — R R S R S R S R S S S CZ, AM, SM, SXT, NA
17 + — I I S R S R S R S R R SM, SXT, NA, K, N
18 — — R R S R S S S S S S S CZ, AM, S
19 — — I S S R S S S S S S S SM
20 — — I I S R S S S S S S I SM

Total 8 1 R 8 7 0 19 0 9 0 6 0 2 2
S 0 4 20 0 16 11 19 14 18 17 12
I 12 9 0 1 4 0 1 0 2 1 6

N o t e: R: resistance; I: intermediate resistance; S: susceptibility. Drug abbreviations see Table 2.

The end of Table 6

T a b l e  7
Comparison of antibiotic resistance patterns between isolates  
with and without integrons (%)

Antibiotics
(concentration  

on disks)

Total of resistant 
isolates (n=80)  

(%/abs. number)

Integron-negative (n=52) Integron-positive (n=28) p

R I S R I S Int1 Int2

CZ (30 µg) 28.75/23 17.4 51.9 30.7 50 50 0 SS NS
AM (10 µg) 38.75/31 28.2 54 17.8 60.7 25 14.3 NS NS
PIP (100 µg) 1.25/1 1.9 5.7 92.4 0 14.2 85.8 NS NS
SM (10 µg) 72.5/58 75 25 0 67.8 32.2 0 NS SS
TOB (10 µg) 6.25/5 0 32.6 67.4 17.8 39.3 42.9 NS NS
SXT (23.75/1.25 µg) 32.5/26 5.7 3 91.3 82.3 3.5 14.2 SS SS
AN (30 µg) 0/0 0 40.3 59.7 0 32.2 67.9 NS NS
NA (30 µg) 30/24 13.4 1.9 84.7 60.7 3.5 35.8 SS NS
GM (10 µg) 6.25/5 0 30.8 69.2 18.8 29.5 51.7 SS NS
K (30 µg) 10/8 7.6 28.9 63.5 14.2 60.8 25 SS SS
N (30 µg) 13.75/11 9.6 53.8 36.6 22.9 54.5 22.6 NS NS

N o t e: R: resistance; I: intermediate resistance; S: susceptibility; NS: not statistically significant; 
SS: statistically significant. Drug abbreviations see Table 2.

drug resistance was also detected in majority E. coli 
isolates from humans (Table 6).

Resistance to more than six antimicrobial agents was 
observed among integron-positive strains (Table 7). Our 
findings showed that integrons were common among 
E. coli isolated in the Alborz province. Class 1 integrons 
prevailed over class 2 integrons.

Discussion
Resistance to antibiotics in enterobacteriaceae can 

be caused by mutation or action of mobile DNA elements 
such as plasmids, transposons, and integrons [34]. 
Integrons have the ability to capture antibiotic resistance 
genes by site-specific recombination. Based on the 

type of integrase gene, five integron classes have been 
described to date [35, 36].

There are few reports on the occurrence and activity 
of integrons in microorganisms. In the present study, 
41.25% of the E. coli strains isolated from sheep, 
chickens, cows, and humans harbored one or two 
integrin-associated genes. This number (41.25%) was 
within the range of prevalence (22 to 59%) reported in 
clinical E. coli isolates by others [27, 37]. In some of 
these isolates, only one integron class was detected 
while others had multiple integrons. This observation 
suggests that integrons commonly exist in the genome 
of enterobacteriaceae and may be responsible for the 
rapid development of antibiotic resistance.

The results of our study also indicated that 31.25% 
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of E. coli isolates carried class 1 integrons; this number 
was higher than that reported by Tennstedt et al. [38], 
who detected the presence of class 1 integrons in 12.4% 
of resistance plasmids obtained from urban waste water. 
This figure (12.4%) was however lower than those 
reported from Norway [39], Western and Central Europe 
[27], Netherlands [40], France [26], Korea [41], and 
China [42].

Antibiotic resistance patterns found in our study 
showed that streptomycin-resistant bacteria could 
be isolated from animals, probably as a result of 
streptomycin and spectinomycin use in animal husbandry 
[43–47]. Furthermore, coliform bacteria isolated 
from humans became colonized with streptomycin- 
resistant bacteria via the food chain in a contaminated 
environment [48–50]. It is also possible that integrons 
are transferred from animal E. coli to human E. coli while 
transiently passing through the human intestine.

Antibiotic resistance patterns observed in the animal 
and human E. coli isolates in the present study are in 
line with a study from Ireland that multi-drug resistance 
is associated with class 1 integrons in E. coli serotypes 
isolated from soil samples and cattle faeces [51]. Several 
studies have also reported the presence of integrons 
in uropathogenic E. coli and have established a strong 
association between the presence of integrons and 
antimicrobial resistance in multi-drug- and single-drug-
resistant E. coli strains [52, 53].

In the present study, class 1 and class 2 integrons 
were detected in twelve and six multiple drug resistance 
E. coli isolates from chicken samples, respectively. 
These results are similar to a recent report that found 
antimicrobial resistance in uropathogenic E. coli from 
Europe and Canada [52].

Conclusion
Integrons were widely disseminated among E. coli 

isolates from the Alborz province. Increased surveillance 
and the development of adequate prevention strategies 
are warranted to elucidate the diversity of factors 
occurring in these environments.
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