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Introduction

The annual frequency of severe burns, according to 
a European study [1], ranges from 0.2 to 2.9 cases per 
10 thousand population. In Russia, about 400 thousand 
burns are registered annually [2]. Burns cause morbidity 
and mortality: they account for more than 300,000 
deaths per year in the world [3–6]. Treatment of burns is 
quite expensive as it requires prolonged hospitalization 
and rehabilitation [7, 8].

The main cause of deaths in hospitalized patients with 
severe burn injury is sepsis [8–10], which is associated 
with high (up to 85%) mortality [11]. Burn injury alters the 
skin integrity and thus violates the major anti-pathogen 
barrier in the body, which increases the risk of infections. 
In addition, in burned patients, the subsequent systemic 
inflammatory response is accompanied by multiple 
organ dysfunction and immunosuppression phase, 
which increases the susceptibility to nosocomial 
infection [12]. Often, a systemic inflammatory response 
syndrome masks the onset of burn sepsis, which delays 
the diagnosis of concomitant septicemia [13]. This factor 
adversely affects the outcome.

This critical effect of infection on treatment outcomes, 
as well as the diagnostic difficulties encountered in 
seriously burned patients, requires new methods 
of identification and characterization of these life-
threatening conditions. In this context, nonspecific 
resistance biomarkers are needed to help improve the 
prognosis for patients with severe burn injury.

Neutrophils
Polymorphonuclear leukocytes, which include 

polymorphonuclear neutrophils (PMN), are the key 
cells of the innate immune system involved in the 
inflammatory response, and the first ones to rush into the 
infected and/or damaged tissues [14]. In healthy people, 
approximately 100 billion neutrophils replenish and leave 
the circulating blood every day [15, 16]. They constitute 
the dominant leukocyte population in the circulating 
blood; they mediate the earliest immune responses 
to infection, and also capture and destroy invading 
microorganisms through phagocytosis and intracellular 
degradation [17]. Until recently, these functions were 
considered unique to neutrophils. However, ongoing 
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research in several areas of cell biology shows that 
PMNs have a diverse repertoire of functional responses 
that go beyond simply killing microorganisms. Currently, 
it is recognized that neutrophils are transcriptionally 
active complex cells [11, 17] that produce cytokines 
[18], modulate the activity of neighboring cells, help 
resolve inflammation [19], and mobilize macrophages 
for the long-term immune responses [20]. Under these 
conditions, neutrophils with their powerful antimicrobial 
functions are, on the one hand, important host defenders 
and, on the other, a dangerous source of inflammatory 
mediators that damage tissues under conditions of 
uncontrolled inflammation [21–23].

The generation of neutrophils from hematopoietic 
progenitors in the bone marrow is strictly controlled 
[24]. The main regulator of granulocytopoiesis is the 
granulocyte colony-stimulating factor (G-CSF), which 
promotes the fixation of myeloid line progenitor cells, 
reduces their maturation time, and stimulates the 
proliferation of granulocyte precursors and the release of 
mature cells from bone marrow [25]. Additional signals 
stimulating the production and release of neutrophils 
can come from IL-6, IL-3, and granulocyte-macrophage 
colony-stimulating factor (GM-CSF) [26].

The number of neutrophils in the circulating blood 
is regulated by the CXCL12/CXCR4 axis (chemokine 
ligand 12/chemokine receptor 4) [24, 27]. Bone marrow 
stromal cells express CXCL12, the ligand for CXCR4, 
presumably bound to neutrophils and retaining them 
in the bone marrow [28]. Although there is not enough 
direct evidence of CXCR4 expression on human 
neutrophils in the bone marrow, plerixafor, an antagonist 
of the CXCR4 receptor, is able to mobilize neutrophils 
in the blood [29]. It was shown that co-administration of 
G-CSF with the CXCR4 antagonist led to a synergistic 
release of neutrophils [30]. The addition of G-CSF 
reduces the formation of CXCL12, which correlates with 
an increase in neutrophil mobilization [31]. In sepsis, 
lipopolysaccharide (LPS) and inflammatory cytokines, 
such as TNF-α, IL-1β, IL-6, and IL-17, can regulate 
the level of G-CSF [32]. Two randomized clinical trials 
on recombinant G-CSF were conducted; the agent 
was shown to increase the number and stimulate the 
function of neutrophils in patients with sepsis [33, 34]. 
The use of G-CSF is very effective in preventing septic 
complications in individuals with an abnormally low 
number of neutrophils; notably, the number of neutrophils 
in sepsis tends to increase [22]. Researchers have 
suggested that the administration of G-CSF can improve 
the bactericidal function of neutrophils. However, 
although the number of PMN cells in these patients 
increased, there was no increase in overall survival. 
These two clinical studies suggest that administration of 
G-CSF is only useful in patients with neutropenia.

Guerin et al. [35] found that the development of sepsis 
is associated with an increase in the number of immature 
forms of neutrophils, which was of high prognostic value 
48 h after hospital admission. It is important to note that 

determining the number of young forms of neutrophils 
makes it possible to distinguish between patients with 
SIRS (systemic inflammatory response syndrome) 
and those with sepsis with a sensitivity of 89.2% and 
a specificity of 76.4% [36]. These data are consistent 
with the results of Hampson et al. [37], who showed 
that within 24 h after a burn, the number of circulating 
immature neutrophils was significantly higher than that 
in healthy volunteers. Their number returned to normal 
on day 3 after the injury, and on day 7, it increased again 
and remained elevated for 28 days. In addition, there 
was a change in the functional activity of granulocytes 
on days 3 and 7. The change was expressed as a 
decreased ability to generate an oxidative burst and a 
decrease in the phagocytic index, which might underlie 
the increased susceptibility to infection after thermal 
damage [38].

Thus, counting the number of immature neutrophils 
helps to accurately distinguish between septic and 
nonseptic individuals with SIRS. This is especially 
important in patients with burns, where sepsis is difficult 
to diagnose, since many of the diagnostic criteria are 
masked by the developing SIRS, which is typical of 
patients with burns >15% of the body surface area.

Normally, mature neutrophils circulate in the blood for 
no more than 6–10 h, and then move to tissues [14, 23, 
28]. They quickly respond to inflammatory signals after 
tissue damage or infection and migrate to the inflamed/
damaged zone [14].

The initial period of thermal injury is characterized by 
neutrophil hyperactivity. A large number of bactericidal 
reactive products resulted from the NADPH oxidase, 
myeloperoxidase (MPO), or nitric oxide synthase (NOS) 
reactions are released from neutrophils [39].

Along with the generation of oxygen radicals, the 
cytotoxicity of neutrophils is mediated by granule 
secretion. Primary neutrophil granules (azurophilic) 
contain MPO and a number of neutrophil serine 
protease (NSP): cathepsin G (CG), neutrophil elastase 
(NE), proteinase 3 (PR3), and the recently discovered 
neutrophil serine protease 4 (NSP4) [40]. NSPs are 
critical for the effective functioning of neutrophils and 
contribute significantly to immune defense against 
bacterial infections [41].

The following NSP features are known:
1. NSPs can directly kill bacterial cells. It has been 

shown that NE destroys gram-negative E. coli by 
cleaving protein A of the outer membrane, and leading to 
cell death. The coordinated actions of NE, CG, and PR3 
in vivo can neutralize S. pneumoniae in a phagocytic 
vacuole.

2. NSPs are able to cleave host proteins to produce 
antimicrobial peptides. The best known example is 
the ability of PR3 to cleave cathelicidin hCAP-18 to 
produce the LL-37 antimicrobial peptide. Cathelicidins 
are inactive when contained in specific granules. During 
degranulation of azurophilic and specific granules, 
PR3 cleaves the C-terminal part from cathelicidin, 
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releasing the cationic bactericidal peptide LL-37 with 
its bactericidal activity against both gram-positive and 
gram-negative bacteria.

3. NSPs can attenuate bacterial virulence by 
inactivating some factors of the pathogenesis. Shigella 
flexneri mobile IcsA and IpaA-C proteins can be 
inactivated by NE, which prevents the bacteria spread in 
the neutrophil cytoplasm. Likewise, CG can cleave the 
adhesive binding factor A of S. aureus and remove its 
active domain [15]. In addition, the neutrophil azurophilic 
granules contain a bactericidal protein that increases the 
permeability of bacterial cells [42]. This protein has three 
types of antibacterial action: direct antimicrobial activity, 
neutralization of endotoxin through a direct LPS binding, 
and opsonic activity.

The specific granules get formed after azurophilic 
granules. They mainly contain a wide range of 
antimicrobial compounds, including calprotectin, 
lactoferrin, lipocalin bound to neutrophilic gelatinase 
(NGAL), hCAP-18, and lysozyme. Calprotectin, also 
called S100A8/A9, is a critical factor in the innate 
immune response to infection and, as shown [43], inhibits 
the growth of microorganisms by chelating the nutrients 
necessary for microbes to progress in vivo the ions of 
Fe2+, Mn2+, and Zn2+, which leads to the reprogramming 
of the bacterial transcriptome. Lactoferrin, also called 
lactotransferrin, is an iron-binding glycoprotein present in 
most human biological fluids [44, 45].

Tertiary (gelatinase) granules are both MPO- and 
lactoferrin-negative. They represent one of the final 
populations of granules formed during the maturation 
of neutrophils. Gelatinase granules contain several 
antimicrobial compounds and also store a number of 
metalloproteases, such as gelatinase and leukolysin.

Currently, antimicrobial peptides (AMPs) are 
becoming the focus of developing new strategies for 
treating bacterial infections [46, 47]. It is suggested that 
AMPs may be promising candidates for the treatment 
of the so-called ESKAPE pathogens (Enterococcus 
faecium, Staphylococcus aureus, Klebsiella 
pneumoniae, Acinetobacter baumannii, Pseudomonas 
aeruginosa, and Enterobacter), which are the group 
of the most “rebellious” bacteria resistant to almost all 
antibiotics; these pathogens are the leading causes 
of hospital infections, including that in burn patients  
[48–50].

Highly reactive oxygen species and AMPs are 
crucial for the effective neutrophil performance and 
the maintenance of phagocytosis. In addition, another 
concept of antimicrobial killing based on neutrophil 
extracellular traps (NET) has been described [51, 
52]. The main components of NET are DNA, granular 
neutrophil proteins, and histones H1, H2A, H2B, H3, and 
H4 [53, 54]. Neutrophilic traps are formed in response 
to pro-inflammatory stimuli, of which IL-8, TNF-α, and 
LPS are the most significant [55]. During the formation 
of NET, neutrophils die, and this process is commonly 
called NETosis.

The cell-free DNA (cfDNA) and modified histones 
involved in NET were proposed to potentially serve 
biomarkers of sepsis [54, 56]. For example, Hampson 
et al. [37] showed that the plasma levels of cfDNA 
after thermal damage were significantly higher in those 
patients who developed sepsis. In addition, plasma 
cfDNA levels measured on the day of the injury differed 
between septic and nonseptic patients. Thus, the 
highest AUROC value was 0.935 in a multi-parameter 
model, which combined the phagocytic index and the 
number of immature granulocytes in the blood. It is 
important to note that circulating cfDNA is nonspecific 
for NETosis and can originate from apoptotic or necrotic 
cells, as well as from bacteria [57]. In order to provide 
convincing evidence of NETosis in vivo, researchers [37] 
analyzed samples of the blood plasma for the presence 
of citrullinated histone H3 (Cit H3). High levels of Cit 
H3 correlated with high levels of cfDNA, demonstrating 
that NETosis did occur during septic episodes and it 
contributed to the increase in plasma cfDNA. These data 
are consistent with the work of Hirose et al. [57], which 
showed the presence of Cit H3 only in infected patients.

Thus, the inclusion of cfDNA and Cit H3 in the sepsis 
risk stratification systems may be useful for clinical 
decision-making or for studying sepsis in patients with 
thermal injury.

Neutrophil-mediated cytotoxicity is implicated in 
damage to microcirculation vessels [58] and multiple 
organ injuries caused by extensive traumas, burns, 
and sepsis [30]. During sepsis, bacterial products 
and proinflammatory cytokines, such as TNF-α and 
IL-1β, reduce the expression of L-selectin on the 
surface of neutrophils and stimulate the expression of 
β-integrins that interact with the intercellular adhesion 
molecule 1 (ICAM-1) and the vascular cell adhesion 
molecule 1 (VCAM-1) on the vascular endothelium 
and thereby contribute to the high affinity adhesion 
to the endothelium [59]. As a result, neutrophils show 
a decrease in marginalization and rolling as well as 
reduced deformability and sequestration in the vascular 
region. At the same time, the neutrophil membrane 
becomes more rigid and less deformable — in proportion 
to sepsis severity [30, 60]. Sequestration of neutrophils 
in capillaries leads to vascular occlusion and promotes 
tissue ischemia and organ dysfunction, especially in the 
highly vascularized lungs and liver [32, 60].

Normally, the destructive effects of neutrophils in 
the tissue are limited by apoptosis of neutrophils. 
However, this process is delayed by an injury (3–5 days 
instead of 7–9 h) [61]. Delayed apoptosis leads to the 
accumulation of neutrophils, an increased release of 
their cytotoxic products, and the development of local 
tissue damage [62].

An important role in the development of multiple 
organ failure and impaired microcirculation is played by 
the interaction of neutrophils and platelets [60]. It is well 
known that activated platelets adhere to neutrophils by 
rapid surface expression of granular P-selectin protein 
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that binds to the high affinity PSGL-1 ligand expressed 
in neutrophils [63]. This interaction causes further 
activation of the neutrophil β2-integrins LFA-1 (αLβ2) 
and Mac-1 (αMβ2), resulting in a massive migration 
of neutrophils toward distal organs [64]. It was found 
that the interaction of platelets and neutrophils led to a 
rapid release of NET [54, 65], promoting the adhesion 
of platelets and red blood cells, and stimulating the 
formation of blood clots [66]. Additionally, platelets 
interact with neutrophils during sepsis by triggering 
the TREM receptor expressed on myeloid cells in the 
presence of LPS; the process stimulates the neutrophil-
mediated production of reactive oxygen species (ROS) 
and the secretion of IL-8 [67].

Numerous studies have shown that sepsis in burn 
patients represents a serious violation of the immune 
response to infection; it leads to neutrophil dysfunction 
and inhibits their migration capacity. Until recently, the 
technology used to measure neutrophil migration was 
limited, time-consuming, and required a large volume 
of blood. In 2010, Butler et al. [68] described a new 
microfluidic device that allowed for easy, accurate, and 
reliable measurements of chemotaxis. The method 
requires only one drop of blood, which is important to 
prevent anemia in patients with severe injuries. This 
group of researchers showed that within 24 h, thermal 
trauma led to a significant decrease in the rate of 
directed migration, which reached a maximum of 72–
120 h after burn injury. Later, Jones et al. [69] described 
a new phenotype of spontaneous migration of isolated 
neutrophils in straight microfluidic channels, which made 
it possible to predict sepsis in patients with severe burns 
with 80% sensitivity and 77% specificity. This phenotype 
was observed 1–2 days before the clinical diagnosis of 
sepsis was made; the test was negative in patients who 
did not develop sepsis [69, 70].

Neutrophilic migration is suppressed by various 
inflammatory mediators, which include lipoxins, 
cytokines (IL-10), and gaseous molecules [71]. Among 
the gaseous mediators, nitric oxide plays a prominent 
role in neutrophil migration. Pharmacological inhibition 
of NOS or a deficiency of the NOS gene was shown to 
increase the migration of neutrophils to the inflammatory 
site in response to several stimuli. Currently, the 
mechanisms by which NO attenuates the neutrophil 
migration are not well understood. There is evidence 
that NO produced by eNOS or iNOS modulates the 
interaction of leukocytes and endothelial cells. Selective 
inhibitors of iNOS and eNOS increase the adhesion 
of neutrophils to endothelial cells, while NO donors 
reduce both the adhesion and transfer of leukocytes 
to inflammatory sites. In addition, expression of cell 
adhesion molecules, such as integrins, L-selectin, 
P-selectin, E-selectin, and ICAM-1, is suppressed by NO 
donors and controlled by NOS inhibitors [60].

Nitric oxide and its iNOS derivative inhibit neutrophil 
migration mainly by the following three mechanisms:

1) iNOS inhibits β-integrins and selectins in 

leukocytes, and also reduces the expression of VCAM-1;
2) NO interacts with other molecules, such as ROS, 

forming peroxynitrite, which can reduce the chemotactic 
activity of neutrophils and their interaction with the 
endothelium, relaying to P-selectin;

3) NO is able to induce the expression of heme 
oxygenase-1, which may impair the rolling and adhesion 
of neutrophils.

In mice, anti-inflammatory acute-phase proteins 
(C-reactive protein, serum amyloid A, alpha-1-acid 
glycoprotein, pentaxin-3, and hemopexin) suppress 
migration/chemotaxis of neutrophils [72]. According 
to the authors, therapeutic inhibition of acute phase 
proteins can improve neutrophil migration and, as a 
result, increase survival of septic patients.

Although neutrophils are activated during SIRS, their 
sensitivity to the fMLP chemotactic stimulus is reduced. 
This is illustrated by a decrease in the expression of 
active FcγRII (Fc gamma receptor II) and CD32 on 
neutrophils. The low functionality of this Fcγ receptor 
on neutrophils may be associated with the production 
of immature neutrophils [73]. As shown earlier [38], 
immature neutrophils under-express antibacterial 
receptors, such as CD14 and MD-2 (myeloid 
differentiation factor 2), and are, therefore, less able to 
transmigrate.

In addition, NSPs released upon degranulation can 
mediate proteolytic cleavage of receptors on immune 
cells [74]. Neutrophilic proteases can also target 
complement receptors. A decrease in the levels of CR1/
CD35 and C5aR/CD88 during inflammation was reported 
[75]; this could impair the interaction of neutrophils with 
microorganisms.

Thus, the mechanisms that control the chemotactic 
function of neutrophils in sepsis are complex. The 
totality of the data suggests that overproduction of 
cytokines, chemokines, and NO observed during lethal 
bacterial sepsis is a major factor behind the disruption of 
neutrophil migration into the infected area.

There is evidence that, in addition to direct 
antimicrobial function, neutrophils can modulate the 
adaptive immune responses to severe inflammation [76, 
77]. It has been shown that acute inflammation, including 
burn injury and sepsis, is paralleled by the appearance 
of nontypical neutrophils in the blood [78, 79].

In 2012, J. Pillay et al. [80] used flow cytometry 
to observe the appearance of different subtypes 
of neutrophils in the peripheral blood during acute 
systemic inflammation caused by the administration 
of LPS (2 ng/kg) to volunteers. This study was based 
on the measurement of CD16 (FcγRIII) and CD62L 
(L-selectin). The authors were able to differentiate 
between three varieties of “inflammatory” neutrophils: 
neutrophils with a regular segmented nucleus 
(CD16bright/CD62Lbright), neutrophils with a ribbon-like 
nucleus (CD16dim/CD62Lbright) and neutrophils with 
a hyper-segmented nucleus (CD16bright/CD62Ldim). 
However, very little is known about the origin of the 
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CD62Ldim cells. It is believed that an increase in nuclear 
segmentation occurs with an increase in cell age, which 
is not confirmed by experimental data [78]. Studies 
using proteomic and kinetic profiling of neutrophils in 
vivo following LPS infection have shown that hyper-
segmented neutrophils have the same age as normal 
segmented cells and the same time to reach maturity; 
therefore, those cannot be considered senescent cells 
[78, 80]. Thus, the researchers concluded that the 
hyper-segmented CD62Ldim cells do not originate 
from mature neutrophils, but can result from a different 
process [80]. These cells enter the bloodstream 
only during inflammation as a separate subset of 
neutrophils. It was found that CD62Ldim neutrophils had 
immunosuppressive properties and were able to inhibit 
T cell proliferation using a ROS-dependent mechanism 
in the immunological synapse [80, 81].

Another mechanism by which hyper-segmented 
neutrophils can inhibit T cell responses is the 
expression of the surface protein PD-L1 (programmed 
death ligand 1) [82]. INF-γ induces PD-L1 expression 
by neutrophils, which allows them to suppress cell 
proliferation and induce lymphocyte apoptosis [34]. 
The PD-1/PD-L1 axis is believed to be an important 
mechanism of immune suppression in septic patients. 
Blocking this axis by a PD-1-blocking antibody improved 
survival of mice with sepsis [83]. Based on these 
studies, it was concluded that the PD-1/PD-L1 pathway 
might become a new therapeutic target in the treatment 
of sepsis; clinical trials to confirm this hypothesis are 
yet to be conducted. Such a suppressive mechanism 
may be protective in tissues with severe inflammatory 
infiltrates. On the other hand, this approach may turn 
counterproductive when neutrophils migrate to the lymph 
nodes and interact with cells of adaptive immunity, as 
shown in experiments on mice [84, 85].

In addition to CD62Ldim, myeloid-derived suppressor 
cells (MDSC), that appear in pathological conditions, 
such as severe burn injury, sepsis, or tumor, also 
possess immunosuppressive activity [24, 86]. The 
MDSC population consists of monocyte and granulocyte 
subpopulations. The mechanism by which MDSCs can 
suppress T cells involves the expression and secretion of 
arginase-1, which reduces the concentration of arginine 
in the microenvironment. L-arginine deficiency leads to 
the arrest of the T cells cycle at the G0–G1 phase [87].

Thus, severe inflammation and sepsis involve 
numerous overlapping immunosuppression 
mechanisms, affecting both innate and adaptive 
immunity. The present knowledge about the 
heterogeneity of neutrophils highlights the importance of 
PMN phenotype its correlation with thermal damage and 
clinical outcome.

Monocytes/macrophages
The mononuclear phagocyte system is a critical 

component of the innate immune response and is 

involved not only in the recognition and elimination of 
various microorganisms, but also in the modulation of 
innate immune responses through the production of pro- 
and anti-inflammatory cytokines [88, 89].

Available data indicate that the diverse biological 
activity of macrophages is mediated by phenotypically 
different subpopulations of cells produced in response 
to local inflammation [90]. In this aspect, two main 
cell populations are important: classically activated 
M1 macrophages and alternatively activated M2 
macrophages [91, 92]. Macrophages M1 are 
activated by: 1) cytokines, such as IFN-γ and TNF-α; 
2) pathogen-associated molecular patterns (PAMPs); 
and 3) endogenous signals of “danger” (for example, 
heat shock proteins or high-mobility group 1 protein — 
HMGB1). These cells exhibit potent antimicrobial activity 
and release IL-12 and IL-23 interleukins, stimulating 
Th1’s strong pro-inflammatory immune responses. 
In addition, they have anti-proliferative and cytotoxic 
activity mediated by ROS, reactive nitrogen species, 
and pro-inflammatory cytokines (e.g., TNF-α, IL-1, 
IL-6). It is believed that the M1 population contributes to 
macrophage-induced tissue damage [92, 93].

The activity of M1 macrophages is balanced by M2 
macrophages, which are mainly involved in suppressing 
inflammation and initiating wound healing [94]. This 
is achieved by releasing anti-inflammatory cytokines 
such as IL-4, IL-10, and IL-13. Macrophages M2 
also contribute to the resolution of inflammation by 
removing apoptotic neutrophils (phagocytosis) and by 
producing mediators essential for tissue remodeling and 
angiogenesis: those include transforming growth factor 
(TGF-β), vascular endothelial growth factor (VEGF), 
and epidermal growth factor (EGF). Macrophages M2 
support Th2-associated effector functions and play 
a key role in the regulation of T cell activity. Based on 
their diverse functions, the alternatively activated M2 
macrophages are further divided into subpopulations 
called M2a (activated by IL-4 and IL-13), M2b (activated 
by immune complexes in combination with IL-1β or LPS) 
and M2c (activated by IL-10, TGF-β, or glucocorticoids) 
[95–98].

It should be noted that the classification of 
macrophages into two polarized states simplifies 
the complex functional characterization of these 
cells [99]. Activation of macrophages is a dynamic 
process: the same cells may initially participate in pro-
inflammatory and cytotoxic reactions, and then in 
resolving inflammation and healing of wounds. This 
illustrates the plasticity of macrophages and their ability 
to modulate their reactions due to the changes in the 
microenvironment [100, 101].

After thermal damage, a population of hyperactive 
macrophages with increased production of mediators, 
such as TNF-α, IL-6, IL-1, was noted. However, 
during the anti-inflammatory phase or sepsis, 
macrophage dysfunction is a key component of general 
immunosuppression after burns [95].
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Using ELISA, Kobayashi et al. [102] studied the 
peripheral blood in heavily burned patients to determine 
the production of cytokines by macrophages of various 
phenotypes. Peripheral blood samples were obtained 
within two days after admission to the hospital, which 
corresponded to 1–4 days after the burn injury. The 
authors analyzed the culture fluids for the presence of 
IL-10, IL-12, CCL1 (a biomarker of M2b monocytes), 
CCL17 (a biomarker of M2a monocytes), CXCL13 (a 
biomarker of M2c monocytes), and CCL2 (a biomarker 
of neutrophils).

At the baseline, peripheral blood monocytes did not 
produce IL-12 either with or without stimulation by the 
staphylococcal antigen; in contrast, IL-10 was found 
in all monocyte cultures of burn patients (but not in 
monocytes of healthy controls). After stimulation with 
the staphylococcal antigen, IL-12 was produced by 
all monocytes isolated from healthy subjects. This, 
according to the authors, indicates that severely burned 
patients carry M2 monocytes. In addition, the enzyme 
arginase was found in lysates of monocytes of burn 
patients but not in cell lysates of controls. The result 
confirms the earlier observation that M2 monocytes 
produce arginase [103].

At the next stage of the study, it was found that majority 
of monocytes from the M2 population represented M2b 
subpopulation [102]. The authors suggested that CCL2, 
constantly present in the serum of burn patients, was 
produced by burn-associated neutrophils; the CCL2 is 
known to stimulate the conversion of resident monocytes 
into M2b monocytes.

Macrophages of the M2b subtype have poor plasticity 
and remained in severely burned patients for a long time. 
In their presence, the patient’s antibacterial protection is 
significantly suppressed. Therefore, individuals carrying 
M2b macrophages are more susceptible to various 
opportunistic infections [104], as shown in mice burned 
up to 25% of the body surface area [105].

Thus, M2b macrophages can serve a suitable 
therapeutic target for controlling opportunistic infections 
in patients with burn injury; this notion though is yet to be 
proved in further studies. 

Conclusion
Sepsis and septic shock are emergency conditions 

that often occur in the treatment of burn patients. 
The diagnosis of sepsis after a severe burn injury 
is complicated by the overlapping signs of sepsis 
and systemic inflammatory response. Under these 
conditions, it is important to clinically identify the patients 
who are developing an infection in order to start timely 
antibiotic therapy.

Currently, an extensive research into nonspecific 
resistance parameters is under way in the hope to 
predict and/or diagnose life-threatening complications 
in burn patients. This is one of the promising venues in 
modern clinical combustiology.
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