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Introduction

Medicine has been accumulating practical experience 
in the use of cooling agents for treatment and prevention 
of diseases during thousands of years. Hippocrates 
used snow and ice to stop bleeding in his patients [1]. 
In medieval times, hypothermia was used in the form of 
ice cubes to stop bleeding, in cases of cardiac arrest [2] 
and in comatose patients [3]. In the XIX century, Phelps 
used local head cooling in traumatic brain injuries [4, 
5]. Whole-body exposure to cold was first used by 
neurosurgeon T. Fay in 1938 to treat head injuries. In the 
middle of the XX century, therapeutic hypothermia was 
forgotten due to increase in complications (bleeding, 
sepsis, heart rhythm disturbances) in the presence 
of general hypothermia when the patient’s body was 
exposed to deeper and longer cooling.

However, hypothermia has begun to develop again 
in the past three decades. This is a highly effective 
neuroprotective method used in various fields of modern 
medical practice.

The discovery of neuroprotection development 
mechanisms in hypothermia has attracted great interest 
[6]. The authors [6] showed the role of this method in 
management of many neurological diseases such as 
acute cerebrovascular accident (ACVA), traumatic brain 
injury, spinal cord injury, hepatic encephalopathy, and 
neonatal encephalopathy.

Hypothermia at a temperature of 33.5°C is the 
standard treatment for newborns with hypoxic/ischemic 
encephalopathy: it is applied in this category of patients 
for 72 h [7].

Nielsen et al. [8] were the first to introduce the concept 
of controlled target temperature, which comprises a wider 
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temperature range (33–36°C) compared to therapeutic 
hypothermia and exerts a better effect on brain lesions. 
Moreover, the use of a target temperature has become 
increasingly widespread in cardiac surgery in patients 
with cardiac arrest to prevent anoxic brain damage [9]. 
Controlled target temperature in the range of 32–36°C 
for 24–48 h is one of the standard treatment algorithms 
in comatose patients after out-of-hospital cardiac arrest 
[10]. Preventive moderate and profound hypothermia 
also serves as standard management in cases of surgical 
interventions with possible cerebrovascular accidents 
such as cerebral aneurysms or in operations aimed to 
restore the aortic arch [11, 12]. In studies carried out 
at the Federal Clinical Research Centre for Intensive 
Care Medicine and Rehabilitology, great importance is 
attached to investigation of hypothermia in patients with 
chronic critical conditions. There have been observed 
clear positive effects exerted by this method on the level 
of consciousness in patients [13].

In clinical studies, Phadtare et al. [14] were the first 
to discover new molecules released through local and 
general body cooling — cold shock hormones (CSH) 
and cold shock proteins (CSP). They play an important 
role in the formation of progenitor cells for the nervous 
tissue of the brain, they are also necessary for repair 
and regeneration of damaged brain cells. The concept 
of “hypothermia in a syringe” has become a new trend 
in the development of therapeutic hypothermia [15]. It is 
based on neuroprotective cooling of individual organs 
and body systems while maintaining normal body 
temperature by intravenous administration of specific 
molecules inducing stress response to hypothermia 
and development of neuroprotection. This approach 
might have a wide range of applications: treatment 
of neurodegenerative diseases as well as acute and 
chronic critical conditions.

Mechanisms of hypothermia-induced 
neuroprotection

Therapeutic hypothermia is a promising method 
of neuroprotection against nerve cell damage. Its 
neuroprotective role has been best shown in experiments 
on dogs [16], rats [17], in patients with cardiac arrest 
[18], hypoxic/ischemic encephalopathies [19], traumatic 
brain injury [20], and some other diseases (Figure 1).

Despite the fact that hypothermic neuroprotection is 
still under research, its main mechanisms are likely to 
be a decrease in the level of nerve cell metabolism and 
free radical formation, reduced inflammatory changes, 
inhibition of excitotoxicity and apoptosis.

Various molecules may act as neuroprotectors. One 
of them is nestin, a neuroepithelial stem cell protein that 
belongs to cytoskeletal intermediate filaments. It was 
first described in the neural stem cells of the developing 
and developed brain. Nestin expression was found 
in stem cells of various tissues [21]. Notably, nestin-
positive cells showing the ability to form neurospheres 

ex vivo and generate differentiated cells of the nervous 
and astrocytic lines are found in the brain [22].

β-tubulin III is another neuroprotective molecule, 
a microtubule element belonging to the family of 
tubulin proteins, one of the two main tubulins (α- and 
β-tubulins) required for heterodimerization and assembly 
of microtubules. This type of protein is found almost 
exclusively in nerve and testicular tissue. When 
expressed in neural tissue, β-tubulin III is involved in 
neurogenesis, axon guidance (the process of axon 
growth towards its target), and cell maintenance [23].

Cerebral ischemia causes neuronal damage (for 
example, after cardiac arrest or ACVA) and contributes 
to secondary damage after brain injury (especially in 
combination with hypoxia and/or hypotension) [24–26]. 
The amount of adenosine triphosphate (ATP) required by 
neurons to survive is proportional to the metabolic rate of 
the brain. During ischemia, the death of cells occurs due 
to the imbalance between the supply of cells with ATP 
(loss of oxidative phosphorylation in hypoxia) and their 
need for it (high oxygen consumption by brain tissues). 
In hypothermia, a decrease in temperature by each 
degree Celsius (from 37 to 27°C) is known to promote 
a decrease in oxygen consumption by brain tissues by 
6–7% [27, 28]. Therefore, hypothermia is able to limit or 
prevent the development of ischemia during the episodes 
of impaired or completely absent blood flow in the brain 
due to decreased ATP consumption and the need to 
provide vitally important tissues with oxygen [29].

Oxidative stress contributes to tissue damage after 
traumatic brain injury due to increased production of 
toxic oxidation products (reactive oxygen species (ROS) 
and reactive nitrogen species (RNS)) and a decrease 
in the level of intracellular oxygen neutralization 
mechanisms. There are a large number of conditions 
for generation of ROS and RNS, including disturbances 
in the mitochondrial respiratory chain, activation of 
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stimulating enzymes (xanthine oxidase, NADPH 
oxidase), and circulation of redox agents (free iron). The 
cumulative impact of these phenomena is exhibited as 
direct damage to proteins, lipids, and RNA/DNA [30]. 
Therapeutic hypothermia inhibits oxidative damage 
to the brain by reducing these processes [31–33] and 
enhancing antioxidant protection, which has been shown 
in clinical studies and in patients with various CNS 
injuries [34, 35].

Brain damage caused by excessive neuronal 
depolarization leads to intracellular Ca2+ overload and 
continuous production of glutamate (excitotoxicity) 
[36, 37]. Moreover, extracellular glutamate level 
also increases due to pathological changes in its 
astrocytic transporters [38]. The final effect of these 
events is rapid activation of extrasynaptic N-methyl-D-
aspartate receptors, promoting intracellular apoptotic 
signaling cascade and subsequent neuron death [39]. 
Hypothermia potently inhibits neuronal death caused 
by direct incorporation of glutamate into the brain 
parenchyma [40]. In addition, brain cooling prevents 
posttraumatic surges of extracellular glutamate during 
ischemia [41, 42], brain concussions [31], subarachnoid 
hemorrhages [43, 44], and bacterial meningitis [45].

Release of intracellular DNA and dying cell debris 
into the extracellular space and secretion of additional 
damage-associated molecular patterns trigger 
production of pro-inflammatory cytokines (increased 
levels of TNF, INF-γ, and IL-6) [46, 47]. Moreover, 
neutrophils rapidly accumulate in the early stages after 
trauma and in the reperfusion phase after ischemia [48, 
49]. The production of cytokines stimulates the pro-
inflammatory (M1/M1-like) phenotype in macrophages 
and microglia [50, 51]. These events are a powerful 
mechanism of damage to CNS tissue. In the chronic 
phase, under ideal conditions, macrophages and 
microglia switch to the anti-inflammatory (M2/M2-
like) phenotype, promoting recovery and lesion size 
reduction. However, recent studies have shown that 
the M2/M2-like phases reach their peak in the sub-
acute and early chronic stages after brain injury, 
followed by a prolonged and negative phase of shifting 
towards the M1/M1-like phenotypes [52]. Hypothermia 
reduces neuronal inflammation by blocking the above 
triggers and shifting the monocytes towards the anti-
inflammatory M2 phenotype [53, 54].

The blood-brain barrier (BBB) maintains the 
chemical composition of the brain interstitial fluid 
and is an essential structure required for the normal 
functioning of the central nervous system [55]. 
Increased BBB permeability due to mechanical damage 
after traumatic brain injury or in various pathological 
processes promotes penetration of pathogens and 
toxic micro/macromolecules into the underlying 
cerebral parenchyma [56, 57]. At the same time, 
migration of erythrocytes into the perivascular space 
with subsequent hemolysis leads to an increase in 
extracellular hemoglobin and free iron, aggravating 

the damage due to ROS [58]. Hypothermia reduces 
damage to the BBB in trauma [59, 60], ACVA [61, 62], 
bacterial meningitis [63], and intracerebral hemorrhage 
[64]. In hypothermia, protective mechanisms include 
inhibition of matrix metalloproteinases [65], preservation 
of proteins, tight junctions [66], reducing the level of 
intracellular ICAM-1 (cell adhesion molecule) on the 
vascular endothelial surface, they prevent diapedesis 
[59, 67].

The above injuries stimulate a variety of downstream 
signaling pathways that trigger different types of 
cell death mechanisms and lead to secondary brain 
damage. Each cell death mechanism has its own unique 
“molecular signature” including numerous effector 
molecules and signaling cascades. When using mild to 
moderate hypothermia, positive effects show as inhibition 
of the level of damaging enzymes or target molecules 
that trigger apoptosis [68, 69], necrosis [70], autophagy 
[64, 71], necroptosis [72], or pyroptosis [73, 74].

Heat shock proteins
Various proteins released under the influence of 

stress on the body trigger cellular recovery mechanisms. 
Heat shock proteins (Hsp) are a class of reparative 
molecules. Therapeutic hypothermia is a powerful 
stimulus for Hsp production in brain cells. Exposure to 
low temperatures forms resistance of neurons to stress 
and stimulates progenitor cells, which in turn replenish 
and replace dead nerve cells.

Correct protein assembly process consisting of 
translation, transcription, and termination of the protein 
chain occurs in the presence of molecular chaperones, 
proteins involved in recognition and selective binding 
of foreign protein molecules, forming stable complexes 
[75]. They play an important role in protein assembly by 
preventing incorrect folding and aggregation of assembly 
components [76]. Hsp are molecular chaperones 
assisting the correct assembly of newly synthesized 
proteins as well as those susceptible to denaturation due 
to stress. In addition to their chaperone role, Hsp exhibit 
cytoprotective functions [77] and inhibit the apoptotic 
cascade [78].

Heat shock proteins are classified into different 
families based on molecular weight measured in 
kilodaltons (kDa): Hsp100, Hsp90, Hsp70, Hsp60, 
Hsp40, and smaller. Almost all families have 
representatives that play the role of constitutive proteins 
(produced irrespective of stress effects on the body 
cells) and inducible proteins (their synthesis is weak 
under normal conditions, but it increases sharply under 
stress effects on the cell). Hsp70 is the most studied 
chaperone promoting correct assembly and transfer of 
various protein molecules [79].

The main transcription factor responsible for activation 
of heat shock proteins is heat shock factor 1 (HSF1) 
[80] (Figure 2). Under physiological conditions, it is 
associated with Hsp90, which inhibits its transcriptional 
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activity, forming an inactive complex with it. Under 
stress conditions, released stress molecules bind to 
Hsp90 releasing HSF1, which in turn forms a bond with 
members of other heat shock protein families, inducing 
their expression [81]. Released from the complex, 
HSF1 migrates into the nucleus and binds Hsp gene 
promoters, which leads to increased regulation of these 
genes [80] (Figure 3).

Heat shock proteins are induced in the CNS by 
various pathological processes including ACVA, 
neurodegenerative diseases, epilepsy, and trauma 
[82]. Their expression is detected in various types of 
cells, including neurons, glia, and endothelial cells. 
They are also found as extracellular proteins formed 
by physiological secretory mechanisms and during cell 
necrosis. In the extracellular environment, these proteins 

increase resistance to stress by binding to stress-
sensitive cells, including neurons [83].

When damaged, the brain becomes very vulnerable 
to even small temperature fluctuations [84]. Changes in 
the cellular environment of the brain during temperature 
stress involve formation of free radicals, changes in 
the mechanisms of nerve impulse transmission or a 
decrease in neuronal protein synthesis, and changes in 
gene expression.

Fluctuations in body temperature can lead to the 
death of brain cells and tissues (neurodegenerative 
changes) [85]. The necessary condition for repairing 
damaged brain cells is the presence of stem cells 
(progenitor cells). The potential of neural progenitor cells 
as a source of CNS tissue repair and regeneration was 
proved in work [86].

Cold shock proteins and hormones
Along with its classic uses, hypothermia triggers 

mechanisms and events that function owing to 
production of cold shock hormones (CSH) and cold 
shock proteins (CSP).

Here, we consider the most studied cold shock 
hormones. Most fibroblast growth factors (FGFs) are 
paracrine hormones [87]. The proteoglycan-binding 
domain of heparin sulfate limits their activity up to 
complete shutdown [88]. In contrast, FGF21 is a member 
of the endocrine subtype, which includes FGF19, 
FGF21, and FGF23. Endocrine growth factors have lost 
their heparin-binding capacity during evolution, which 
allows them to circulate freely after being produced [89]. 
As a result, they use klotho transmembrane proteins as 
co-receptors (α-klotho and/or β-klotho) that play the role 
of molecular binders to facilitate and stabilize interaction 
between extracellular ligands and tissue receptors [90, 
91]. The β-klotho protein is an obligatory co-receptor 
for FGF21 required for ligand binding and activation 
of the FGFR1c receptor in vivo [92, 93]. It was also 
shown that in vitro β-klotho protein increases affinity of 
FGF21 to bind to various isoforms of FGF receptors, 
but the magnitude of their activation depends on the 
type of receptor on target organs (FGFR1c > FGFR2c > 
FGFR3c) [92]. Moreover, β-klotho protein expression is 
limited to the following organs: liver, pancreas, adipose 
tissue, and some populations of hypothalamic and 
hindbrain neurons [94, 95].

 Circulation of FGF21 increases in humans and 
rodents under cold stress. In humans, this phenomenon 
was proved in study [96], when patients wearing only 
hospital suits were left for 12 h in a ward with the 
surrounding temperature reduced to 19°C, after which 
the FGF21 level was measured in these patients and 
those in the wards with thermoneutral surrounding 
temperature (24°C).

Studies [97] show that an increase in FGF21 levels 
can improve brain function after acute pathologies and 
in chronic neurodegenerative conditions. The effects 
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of FGF21 are believed to have direct and indirect 
mechanisms of action; it has also been revealed that 
FGF21 penetrates the BBB.

The direct effect of this factor was shown in work 
[97], where 5 nmol FGF21 was injected into samples for 
6 days in vitro, which resulted in a decrease in damage to 
cells with FGF21 receptors due to glutamate. In addition, 
there was observed an increase in phosphorylation 
of neural AKT (AKT-1 kinase), ERK (extracellular 
signal-regulated kinases), and GSK-3β (glycogen 
synthase kinase), which lead to increased cell survival 
and neuroprotection. The authors of [98] argue that 
peripherally derived FGF21 promotes remyelination in 
the brain and spinal cord due to lysophosphatidylcholine. 
In study [99], it was found in vitro that FGF21 reduces 
damage to neurons induced by Aβ1–42 (a structural 
variant of β-amyloid) in patients with Alzheimer’s 
disease. It was also noted [100] that administration of 
FGF21 to normothermal subjects improved the BBB 
integrity, reduced cerebral edema and tissue damage, 
along with improvement in recovery from neurologic 
impairment. In [101], it was demonstrated that 14 days 
of therapy with 1.5 mg/kg of recombinant FGF21 (started 
6 h after injury) reduced metabolic dysfunction, neuronal 
inflammation, reduced the area of cerebral infarction, 
white matter damage, and improved neurological results 
after focal ACVA. Finally, it was shown in vivo [102] 
that increased stress in the endoplasmic reticulum of 
brain neurons leads to phosphorylation of eukaryotic 
initiation factor 2 alpha (eIF2α), which in turn stimulates 
activation of transcription factor 4 (ATF4) and leads 
to an increase in neuronal expression of FGF21. The 
indirect mechanism of FGF21 action is stimulation 
of ketogenesis in the liver. Ketone bodies (acetone, 
acetoacetate, and β-hydroxybutyrate) are efficiently 
delivered to the brain where they serve as an alternative 
source of energy for oxidative metabolism [103].

Another mechanism of indirect action is the impact of 
FGF21 on the blood glucose level: this factor leads to 
its normalization [104]. However, unlike insulin, FGF21 
normalizes blood glucose levels without inducing 
hypoglycemia [105]. Thus, stimulation or administration 
of FGF21 may be the best strategy for glycemic control 
in critically ill patients.

Irisin is a glycosylated protein fragment secreted 
by muscle tissue in response to training stress and 
muscle contraction (tremor) during cooling. The more 
contractions a muscle makes, the higher blood irisin 
level will be reached [106, 107].

Irisin is a neuroprotective hormone. It was found that 
intravenous introduction of 200 mg/kg of this substance 
30 min after occlusion of the middle cerebral artery in 
ACVA model reduced the volume of cerebral infarction 
after 3 days [108]. It was revealed in another study 
[109] that irisin administration at a dose of 7.5 mg/kg 
directly into the ventricular system of the brain reduced 
the severity of neurological deficit, reduced infarction 
area, and edema of brain tissue. It was also observed 

that irisin influenced BDNF promoting its production and 
enhancing immunoreactivity. These phenomena lead to 
an increase in the neuroprotective properties of the brain 
and reduction of apoptosis. The impact of this hormone 
still requires further investigation, but it has already 
proved to be very promising as a factor for recovery and 
protection of neuroglia and astrocytes, which is worth 
investigating both in patients with acute and chronic 
critical conditions and in those with neurodegenerative 
diseases of the central nervous system.

Meteorin-like hormone was first identified as a factor of 
fat mobilization and PGC-1α4 expression (a hypertrophy 
regulator) in muscles. This hormone was found to have 
a stimulating effect on the anti-inflammatory function 
of macrophages due to the eosinophil-dependent 
expression of IL-4 [110]. CNS immune cells, including 
microglia and infiltrating macrophages, alter the 
extracellular microenvironment after brain damage 
[111]. Microglia and M1-type macrophages produce 
pro-inflammatory cytokines, while M2-type cells 
promote release of anti-inflammatory factors. Work [61] 
demonstrates that therapeutic hypothermia at 33°C for 
four hours increased the ratio of M2/M1 microglia and 
lymphocytes in the damaged cortex after concussion. 
Moreover, the authors of this study have shown that 
hypothermia increases expression of pro-inflammatory 
cytokines, including IL-10 and TGF-β.

Meteorin circulating in the blood activates anti-
inflammatory pathways of macrophages, leading to their 
conversion into the M2 type.

Cold shock proteins are produced during cold 
stress and stimulate cold adaptation in cells. After these 
proteins appear, they remain inside the cell and their level 
increases progressively with temperature decreasing 
below thermoneutral values. The therapeutic effect is 
achieved due to signaling pathway stimulation and leads 
to neuroprotection. We consider three clinically significant 
cold shock proteins: RNA-binding motif 3, cold-inducible 
RNA-binding protein, and Reticulon-3.

RNA-binding motif 3 (RBM3) was first described 
in study [112] demonstrating that cooling the body to 
32°C for 24 h leads to an increase in RBM3 levels in 
mammals. Recent studies [113] have confirmed that 
hypothermia increases RBM3 levels in major neurons 
of the brain. An increase in RBM3 of messenger RNA 
(mRNA) was also observed in brain culture cells after 
incubation at 32°C for 72 h.

RBM3 is a potent neuroprotective agent. In patients 
with Huntington’s disease, there was observed a 
decrease in mRNA RBM3 in cells expressing toxic 
polyglutamine fragment HD-74Q. It has been shown 
[114] that the exogenous administration of RBM3 leads 
to inhibition of HD-74Q and reduces mortality of cells 
affected by this fragment.

Increased RBM3 expression was also reported to 
reduce nitric oxide-induced cell death in neurons [115]. 
Delayed neuronal death is often observed in acute 
brain injuries [116, 117]. In vitro and in vivo experiments 
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showed that production of RBM3 increased mRNA 
function, which in turn ensured survival of injured 
neurons [118, 119] (Figure 4).

Cold-inducible RNA-binding protein (CIRBP) as 
a representative of cold shock proteins was first 
discovered in the experiments of Nishiyama [120].

Modern in vitro and in vivo studies have found 
the level of CIRBP to increase in the main neurons of 
the brain under the influence of hypothermia. Studies by 
Li et al. [121] show that a decrease in cerebral cortex 
temperature to 32°C for 2 h increases CIRBP levels. 
Later Zhang et al. [122] demonstrated that exposure of 
cortical neurons to 32°C for 12 h also increased CIRBP. 
Similar results were obtained in the setting of complete 
body cooling, when an increase in CIRBP in vivo was 
recorded. Induced complete cooling of the body (31°C) in 
adult rats during 48 h promoted increased production of 
CIRBP in the hypothalamus [123]. Another study reports 
increased phosphorylation (activation) of the protective 
kinases pERK and pAKT due to CIRBP production after 
hypothermia [124]. Moreover, hypothermia increases 
release of protective proteins, including CIRBP, Bcl-2, 
and AKT, while decreasing apoptosis proteins such as 
Bax, Bad, Bak, caspase-3, caspase-9, and Apaf1 [125].

Neuroprotective properties of CIRBP have been 
revealed in cases of post-traumatic brain injury [123]. 
The level of this protein increased in the hypothalamus 
of rats after brain injury and remained elevated for 
48 h after cooling to 31°C during 48 h. The same 
study has reported on decreased levels of apoptosis in 
damaged cells of the cerebral cortex, hippocampus, and 
hypothalamus.

Study [126] notes that hypoxia decreases proliferation 
of cells lacking cold-inducible RNA-binding protein. 
CIRBP blocks the death of these neurons. Hypothermia 
protects them by preventing apoptosis and reducing 
the function of targets for apoptotic proteins, including 
HIF1α.

The latest representative of cold shock proteins is 
Reticulon-3 (RTN3A1) first described by Moreira et al. in 
1999 [127]. The authors of [128] showed that RTN3A1 is 

a cold shock protein as it is produced in neurons while 
cooling. This protein is a modulator of pathogenesis in 
Alzheimer’s disease. The precursor of β-amyloid BACE1 
stimulates processing of the amyloid precursor protein 
(APP) into β-amyloid that forms blue plaques in the 
brain [129]. Inhibition of BACE1 is one of the possible 
treatment options for Alzheimer’s disease and RTN3A1 
inhibits BACE1 via two mechanisms. The first is inhibition 
of axonal transport of BACE1 protein to synapses, which 
impairs its interaction with APP reducing formation of 
blue plaques; the second is a decrease in the number 
of neurotoxic fragments (Aβ1–40 and Aβ1–42) in the 
cerebral cortex [130].

Conclusion
Therapeutic hypothermia is a powerful neuroprotective 

method affecting the brain through a variety of 
mechanisms. Promoting production of heat shock 
proteins, this method builds neuronal resistance to stress 
and in turn stimulates progenitor cells regenerating and 
replacing dead nerve cells. Therapeutic hypothermia 
generates cell differentiation of the nervous and 
astrocytic lines by stimulating production of nestin. 
Application of this method offers the possibility to limit or 
prevent development of ischemia in the absence of blood 
flow to the brain due to decreased ATP consumption and 
the need to provide vitally important tissues with oxygen. 
Produced during hypothermia, cold shock hormones 
and proteins have anti-inflammatory, neuroprotective, 
and stimulating effects on brain cells, which makes them 
one of the most important mechanisms triggered by 
therapeutic hypothermia.

The studies of recent decades offer us the opportunity 
to make sure of the immensity of proven effects obtained 
through therapeutic hypothermia, but at the same time, 
there is a huge field for discovering new possibilities 
of this method, manifested at the molecular level. It is 
still necessary to study, develop, and apply therapeutic 
hypothermia for treatment of patients in acute and 
chronic critical conditions.
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