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Modern methodology of PET/CT quantitative analysis in patients with glioblastomas is not strictly standardized in clinic settings and 
does not exclude the influence of the human factor. Methods of radiomics may facilitate unification, and improve objectivity and efficiency 
of the medical image analysis.

The aim of the study is to evaluate the potential of radiomics in the analysis of PET/CT glioblastoma images identifying the relationship 
between the radiomic features and the 11С-methionine tumor-to-normal brain uptake ratio (TNR) determined by an expert in routine.

Materials and Methods. PET/CT data (2018–2020) from 40 patients (average age was 55±12 years; 77.5% were males) with a 
histologically confirmed diagnosis of “glioblastoma” were included in the analysis. TNR was calculated as a ratio of the standardized uptake 
value of 11C-methionine measured in the tumor and intact tissue. Calculation of radiomic features for each PET was performed in the 
specified volumetric region of interest, capturing the tumor with the surrounding tissues. The relationship between TNR and the radiomic 
features was determined using the linear regression model. Predictors were included in the model following correlation analysis and LASSO 
regularization. The experiment with machine learning was repeated 300 times, splitting the training (70%) and test (30%) subsets randomly. 
The model quality metrics and predictor significance obtained in 300 tests were summarized.

Results. Of 412 PET/CT radiomic parameters significantly correlated with TNR (p<0.05), the regularization procedure left no more 
than 30 in each model (the median number of predictors was 9 [7; 13]). The experiment has demonstrated a non-random linear correlation 
(the Spearman correlation coefficient was 0.58 [0.43; 0.74]) between TNR and separate radiomic features, primarily fractal dimensions, 
characterizing the geometrical properties of the image.

Conclusion. Radiomics enabled an objective determination of PET/CT image texture features reflecting the biological activity 
of glioblastomas. Despite the existing limitations in the application, the first results provide a good perspective of these methods in 
neurooncology.
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Introduction

Glioblastoma is the most common primary malignant 
cerebral astrocytic neoplasm [1]. It is characterized 
by intratumor heterogeneity at the cytological, 
transcriptional, and genomic levels, which determines 
individuality of its molecular profile, the related 
prognosis, and the management [2].

A complex of neuroimaging modalities is used for 
glioblastomas including magnetic resonance imaging 
(MRI) and positron emission tomography (PET) combined 
with computed tomography (CT) [3]. PET/CT is an 
imaging technique with radiopharmaceuticals containing 
a radionuclide label (isotope). The uptake of this 
preparation in tissues enables the identification of tumor 
aggression, making PET/CT essential in neurooncology, 
especially for malignant neoplasm imaging.

Traditionally, the quantitative analysis of PET signal 
intensity is conducted by calculating a standardized 
uptake value (SUV) of a radiopharmaceutical in a 
specified tissue volume within the region of interest 
set by an expert. Comparing SUV values in the lesion 
and intact brain area, a relative tumor-to-normal 
brain uptake ratio (TNR), characterizing the malignity 
of the oncological process, is estimated. Considering 
the variability of SUV computation methods and the 
participation of an expert in the process, the PET/CT 
results assessment may be influenced by a subjective 
human factor. All of the above-said shows the importance 
of standardization and automation of an image-driven 
radiopharmaceutical uptake computation.

In recent years, searching for advanced informativity 
and objectivity in interpreting medical imaging, 
investigators have paid greater attention to radiomics, a 
new trend in quantitative image analysis. This evolving 
field of computer sciences is discovering the relations 
between the quantitative features of medical images and 
clinical information, including histological and genetic 
data, functional status, patient life expectancy, etc. [4]. 
The main purpose of these studies is to seek additional 
clinically relevant information in the image textures, 
which could essentially widen the capabilities of the 
current medical imaging. The radiomics toolbox enables 
the non-invasive studies of imaging correlates of the 
tumor’s biological properties. Using extracted image 
features for classification and regression with machine 
learning is also a prospect for partial or complete 
automation of labor-consuming imaging postprocessing 
and detection of sophisticated patterns unavailable to 
the naked eye that must generally improve personalized 
diagnosis and disease prognosis [5–7].

Based on digital image analysis, the statistics of 
voxel values distribution are estimated. These are also 
called features, parameters, and image biomarkers in 
radiomics research, and in the context of subsequent 
applications in machine learning, they may be called 
variables or predictors. In the present work, we call 
these primary sets of statistics the radiomic features.

In neurooncology, the studies evaluating the clinical 
significance of radiomic features from PET/CT images in 
patients with high-grade glial tumors are not numerous. 
We did not find any publications analyzing image 
correlates of the glioblastoma biological properties using 
the 11С-methionine PET/CT data with radiomics.

The aim of the study was to evaluate the potential 
of radiomics in the analysis of PET/CT glioblastoma 
images identifying the relationship between the radiomic 
features and the 11С-methionine TNR determined by an 
expert in routine.

Materials and Methods
The preoperative PET/CT data in 40 patients (31 men, 

77.5%, and 9 women, 22.5%) were obtained in our 
study. The average age was 55±12 years. All patients 
were treated at the N.N. Burdenko National Medical 
Research Center for Neurosurgery (Moscow, Russia).

The inclusion criteria in our study were as follows:
the diagnosis of “glioblastoma” verified by histologic 

and molecular methods;
supratentorial tumor location;
patient’s age of 18 years and older;
PET/CT brain scanning prior to neurosurgical 

treatment;
brain MRI prior to neurosurgical treatment;
no treatment for glioblastoma before PET/CT and MRI 

examinations;
informed consent signed by the patient;
PET performed in 2018–2020.
The study complies with ethical principles of the 

Declaration of Helsinki developed by the World Medical 
Association (2013).

In the preoperative period, all patients underwent brain 
MRI on the Signa HDxt tomograph (General Electric, 
USA) with magnetic field of 3.0 T and 8-channel head 
coil. The following pulse sequences (modes) were used:

T1 FSPGR BRAVO with isotropic voxel of 1×1×1 mm 
before and after intravenous contrast;

Т1 FSE in the axial projection with a slice thickness of 
5 mm and 1-mm gap between the slices before contrast 
enhancement and T1 in the axial projection after contrast 
enhancement;
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T2 FSE in the axial projection with a slice thickness of 
5 mm and 1-mm gap between the slices;

T2 FLAR in the axial projection with a slice thickness 
of 5 mm and 1-mm gap between the slices;

DWI ASSET with a slice thickness of 5 mm and 1-mm 
gap between the slices with the apparent diffusion 
coefficient (ADC) mapping;

ASL perfusion (with CBF mapping).
11C-methionine PET/CT examination was performed 

on the Siemens Biograph 40 system (Siemens 
Healthineer, USA) using a standard protocol: 10-min 
scanning 10 min after intravenous injection of the 
preparation. Images were reconstructed using OSEM 
(ordered subset expectation maximization) algorithm 
with 5 iterations and 8 subsets and correction of the 
uptake with the low-dose CT scan.

To assess the metabolic activity of 11C-methionine 
in the tumor, mean values of SUV were calculated in 
1.0 cm3 of the most active tumor part (SUVt) and in 
1.0 cm3 of the normal cerebral tissue of the frontal lobe 
in the contralateral hemisphere (SUVn). The TNR was 
estimated as TNR=SUVt/SUVn.

To calculate the radiomic parameters, MRI was 
preliminarily co-registered with PET/CT using the PMOD 
v. 4.0 software (Switzerland). A single rectangular region 
of interest of the fixed size was installed on all the slices 
of the co-registered images in such a way that it covered 
the maximal tumor volume on any slice obtained by 
MRI and PET/CT. In this way, a full volume of tumor in 
3D projection was encapsulated in a parallelepiped. 
After that, PET/CT data for each patient in the volume 
of the specified parallelepiped was exported to a file in 
the NIfTI format, which was used to calculate radiomic 
features.

Calculation of radiomic features. The data 
were processed and analyzed using the R (v. 4.2.2) 
programming language in the RStudio Server IDE 
(RStudio version 2022.07.0+548) on the NVIDIA 
DGX A100 supercomputer (NVIDIA, USA). Radiomic 
features were calculated based on PET/CT with 
RIA library [8]. Calculations for each patient were 
performed for the complete image from the NIfTI file 
without supplementary masks. Image preprocessing 
included discretization of voxel values by 128 levels. 
The levels were formed in two ways: equally sized 
(“es_128”) and equal by the number of values entering 
the level, equally probable (“ep_128”). The choice of 
discretization levels was determined by a compromise 
between the computation speed and the expected value 
of the radiomic features.

The following groups of features were calculated [9]:
the first order statistics — the characteristics of signal 

intensity distribution without taking into account spatial 
features (mean, median, mode, etc.);

statistics calculated from the gray level co-occurrence 
matrix (GLCM) in the neighboring voxels in the given 
direction and at a given distance (contrast, homogeneity, 
difference, etc.);

statistics calculated by the gray level run length 
matrix (GLRLM) — gray level non-uniformity, run 
length non-uniformity;

statistics depending on the geometric texture features 
(volume, surface, surface-to-volume ratio, fractal 
dimensions, etc.).

Statistical data analysis. The first step of 
the statistical analysis was to evaluate the linear 
relationship of each radiomic parameter with the TNR of 
11С-methionine using the Pearson correlation coefficient. 
In the second step, linear regression models were built 
using glmnet library with radiomic features as predictors 
and TNR as a target (dependent) variable. To reduce 
the dimensionality of the feature space essentially, only 
those variables for which correlation with TNR was 
statistically significant (p<0.05) were included in the 
model. Further dimensionality reduction was done using 
LASSO regularization. The predictors were normalized 
before training: centered (subtraction of the predictor 
mean) and scaled (divided by predictor standard 
deviation). The target variable was transformed with 
decimal logarithm.

Machine learning was carried out in the series of 
tests according to the following algorithm. In each test, 
the training and test samples were formed randomly 
as 70 and 30% of the initial dataset, respectively. After 
the training, the true logarithmic values and the model’s 
predictions on the test sample were potentiated. Then, 
the prediction quality metrics that is mean absolute 
error, MAE, root mean squared error, RMSE, and 
predictor significance (absolute coefficients value) were 
calculated, and the list of these predictors was saved. 
The test was repeated 300 times. The distribution 
of prediction quality metrics was obtained with 
the frequency of certain predictors’ occurrence in the 
models.

The descriptive distribution statistics are presented in 
this paper as mean values ± standard deviation (M±σ) 
and also as median, 25th and 75th percentiles (Me [25%; 
75%]). The correlation was assessed using Pearson and 
Spearman coefficients. The null hypothesis in statistical 
tests was rejected at the level of significance p<0.05.

Results
The distribution of TNR in the examined patients is 

presented in Figure 1. The median TNR was 3.26 [2.74; 
4.17], and the minimum and maximum values amounted 
to 1.94 and 5.03.

An example of the axial slices in the region of interest 
on the co-registered images from different modalities 
(PET/CT and MRI), which was used to calculate PET/CT 
radiomic features, is given in Figure 2.

As a result of using radiomics over the initial and 
discretized PET images, 1362 quantitative parameters 
containing non-empty values have been obtained, 
of which 412 correlated with 11С-methionine TNR 
statistically significantly (median correlation coefficient 
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was 0.44 [0.39; 0.54], median p-value was 0.0044 
[0.0003; 0.0140]). The values of these features, scaled 
in the range from 0 to 1, are shown in Figure 3.

In each of the 300 machine learning tests, the training 
sample size was 28 cases, and that of the test sample 
was 12 cases. Below, we give prediction quality metrics 
for linear regression models generalized according to 
the results of 300 tests and calculated exclusively on the 
test samples.

The experiment showed the MAE median equal to 
0.63 [0.51; 0.73], RMSE median — 0.87 [0.66; 1.09]. 
The median of the Spearman correlation coefficient 
between the true and predicted TNR in 300 tests was 

0.58 [0.43; 0.74], and the median of the p-value was 
0.05 [0.01; 0.16].

In Figure 4 (a), the superimposed plots show the 
true and predicted TNR values fitting in 300 tests with 
appropriate regression lines. Figure 4 (b) illustrates 
a generalized tendency of the true and predicted TNR 
coincidence across all tests.

The median number of predictors utilized in each of 
the 300 models amounted to 9 [7; 13]; the minimum 
number of predictors was equal to 0, and the maximum 
to 30. Predictors most frequently (50 times and more) 
selected by the models are presented in the Table.

The main elements of predictor names from the Table 
are explained below.

The common elements in the names of all variables 
presented in the Table are as follows:

“__es” — a type of discretization with equal size of 
bins for gray levels (equally sized);

“__ep” — a type of discretization with equal probability 
of signal intensity values entering every gray level 
(equally probable);

“__orig” — calculation using original non-discretized 
image;

“_128” — total number of gray levels obtained by 
image discretization.

Fractal dimensionality names (geometric 
characteristics of the images) include the following 
designations:

“fractal” — a common designation of a fractal 
dimension;

“_bc” — Minkowski dimension (calculated by 
box-counting algorithm);

“_c_d” — a correlation dimension;

TNR

Figure 1. Histogram of 11С-methionine TNR distribution in 
the examined group of patients
The red dotted line shows the median tumor-to-normal brain 
uptake ratio (TNR)

Figure 2. Example of one level in the region of interest 
set for PET radiomic features calculation in the patient 
with the diagnosis “glioblastoma localized in the lateral 
ventricles”:
(a) MRI, T1 contrast; (b) 11С-methionine PET/CT

а

b

Figure 3. Radiomic features visualized in the polar 
coordinate system and scaled in the range from 0 (the 
circle center) to 1 (circumference of maximum radius)
Color marks the value of the tumor-to-normal brain uptake ratio 
(TNR)

TNR
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Predictors selected 50+ times in the linear regression models  
with LASSO regularization (results of 300 tests; predictor  
names formed by the RIA library are preserved)

No. Coded predictor identification Number  
of models

Model  
share (%)

Mean  
significance

1 fractal_bc_d_22__es_128 157 52.3 0.0274
2 fractal_bc_d_121__es_128 122 40.7 0.0172
3 fractal_bc_d_40__es_128 117 39.0 0.0160
4 fractal_bc_d_113__es_128 86 28.7 0.0165
5 Cluster_p_s_nd__ep_b128_d1_mean 82 27.3 0.0117
6 Inv_Gauss_2p_s__ep_b128_d1_mean 81 27.0 0.0173
7 fractal_bc_d_36__es_128 77 25.7 0.0149
8 fractal_bc_d_123__es_128 66 22.0 0.0127
9 fractal_c_d_126__es_128 62 20.7 0.0180

10 Max_AD_md__orig 60 20.0 0.0133
11 Homogeneity2_e_nd__es_b128_d1_mean 57 19.0 0.0098
12 fractal_bc_d_24__es_128 54 18.0 0.0221
13 Cluster_d_s__es_b128_d1_mean 51 17.0 0.0108
14 Inv_Gauss_2f_s__ep_b128_d1_mean 50 16.7 0.0126
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Figure 4. Compliance of true and predicted 
values of tumor-to-normal brain uptake 
ratio (TNR) in 300 tests:
(a) blue color shows regression lines for all 
tests; (b) blue color shows the LOESS line for 
the entire dataset in 300 tests

number (from 1 to 128) — the gray level 
for which fractal dimension is calculated.

The following components are used in 
the names of statistics calculated from the 
gray level co-occurrence matrix:

“Cluster_p_s_nd” — cluster prominence 
non-diagonal;

“Cluster_d_s” — cluster difference;
“Inv_Gauss_2p_s” — inverse Gaussian 

2 polar;
“Inv_Gauss_2f_s” — inverse Gaussian 

2 focus;
“Homogeneity2_e_nd” — homogeneity2 

non-diagonal [9].
The only statistic of the first order 

from the Table has “Max_AD_md” 
designation — maximum absolute 
deviation from the median.

Discussion
Radiomics in neurooncology is an 

actively evolving scientific area. The 
typical application of radiomics methods 
in glioblastoma imaging is a differential 
diagnosis (with other tumors, pseudoprogression), 
survival prognosis in general life expectancy, 
identification of molecular biomarkers (for example, 
IDH1, MGMT) [10]. However, the number of studies in 

which radiomics is used to investigate PET/CT images of 
brain glioblastoma is small.

In a study by Cao et al. [11], the authors solved 
the task of differentiating glioblastoma and solitary 

Radiomics for PET/CT Images of Glioblastoma
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of 11С-methionine TNR. Besides, these variables 
appeared in the models in each 2nd–3rd test for several 
gray levels.

An essential aspect of this work is the absence of 
substantial image preprocessing and maximal usage of a 
vast region of interest, including the visible tumor volume 
and signals from the surrounding visually intact brain 
structures. In some cases, an air space beyond the skull 
appeared in the region of interest. Our study showed 
that this approach to the region of interest selection 
does not interfere with the indirect TNR assessment by 
the PET/CT radiomics with the linear regression model. 
This is probably facilitated by the inclusion of intact brain 
areas, which are used in the standardized methodology 
of TNR estimation.

Limitations of the present study. The main 
limitation of our study is a small sample size and an 
incommensurably large number of radiomic parameters. 
The sample was not enriched with artificial, synthetic 
techniques. A small sample size is likely to explain 
a great variability of the results in 300 tests, with the 
division into training and test subsets. Multiple repetitions 
of machine learning with the selection of training and 
test samples are an important methodological aspect 
of our work since it prevents accidental overrating or 
underrating of the expected modeling quality metrics at 
such a small data volume.

The region of interest selection for radiomics 
computation was performed by an expert, and it varied 
depending on the tumor localization and size. It resulted 
in the regions of interest being unequal in size and 
heterogeneous in their content.

Limitations of the study are also connected with the 
choice of only one discretization variant and the lack 
of other calculation parameters variation. Part of the 
radiomic features was excluded from the analysis due 
to missing values. The splitting into the training and test 
samples at a small volume of investigations was likely to 
influence the quality of machine learning and the results 
of distinct tests.

All the above restrictions are typical for studies 
in radiomics. Further efforts will be directed toward 
overcoming these limitations by obtaining, for example, 
a greater volume of data.

Conclusion
Radiomics enables the objective determination 

of PET/CT texture features reflecting the biological 
activity of glioblastoma and can potentially augment 
the efficiency of neuroimaging. Despite the existing 
limitations in radiomics application, the first results 
demonstrate promising prospects for their development. 
The existence of regularities revealed on the small 
PET/CT samples must be verified on large datasets.

Study funding. The study was financially supported 
by the Ministry of Science and Higher Education of the 

metastases using radiomic features of images 
obtained by MRI and 18F-fluorodeoxyglucose PET 
and demonstrated high model quality metrics. 
Similar high indicators of model performance were 
demonstrated by Zhang et al. [12], using the data 
obtained from MRI with contrast-enhancement and 
in the diffusion mode in addition to the PET data. 
Li et al. [13] showed the possibility of combining clinical 
parameters and radiomic features from dynamic 
О-(2-[18F]-fluoroethyl)-L-tyrosine PET in predicting the 
survival of patients with glioblastomas, IDH wild type, 
with moderate model quality. Barry et al. [14] studied 
the reproducibility of radiomic features in repeated 
О-(2-[18F]-fluoroethyl)-L-tyrosine PET. Carles et al. [15] 
have shown that radiomics gives essential information 
for prognosis in patients with recurrent glioblastoma. 
Some experience in the differential diagnosis of the 
true tumor progression and pseudoprogression has 
been obtained by Lohmann et al. [16]. An example of 
differential diagnosis of glioblastomas and lymphomas 
based on PET data with radiomics has been presented 
by Kong et al. [17]. Qian et al. [18] have demonstrated 
the possibility of determining the MGMT status in 
patients with glioblastomas by the PET data using 
radiomics.

A common restriction of current research in radiomics 
of PET/CT glioblastoma images is a sample size that 
rarely exceeds a hundred observations. Besides, 
the machine learning quality in these works does not 
always reach a high level. In studies with this relatively 
low-volume data, heterogeneity and sample imbalance 
may occur, leading to the failure to reach maximum 
model performance and built decisions keeping the 
adequate performance on new independent series of 
observations [10].

Considering the scientific literature data, we believe 
this article presents the first study that applies radiomics 
to analyze imaging correlates of biological glioblastoma 
features using 11С-methionine PET/CT. Although the size 
of our image sample is limited, the first results ground 
further analysis as more data become available and 
supplementary clinical information is included. Thus, 
on the lower half of the “ring” (Figure 3), we can see 
apparent visual patterns of TNR distribution, which are 
related to fractal dimensions. The existence of these 
patterns suggests their separability. In the case of 
pattern stability and accumulation of a significant number 
of observations, the entire potential of machine learning 
may be involved in their separation.

Figure 4 (b) shows a steady linear trend for all 300 
tests — a high correlation of the true and predicted 
values in the mid-range of TNR distribution coinciding 
approximately with the interquartile range. The stability 
of this trend in our study is another reason to reproduce 
experiments on a large-volume sample.

We have established that geometric parameters 
of 11С-methionine PET/CT image, namely, fractal 
dimensions, were the most significant predictors 
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