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The scope of diagnostic medical examinations increases from year to year causing a reasonable desire to develop and implement new 
technologies to diagnostics and medical data analysis. Artificial intelligence (AI) algorithms became one of the most promising solutions to 
this problem and proved themselves in the course of mass practical application. During the three-year Moscow experiment started in 2020, 
the possibility was achieved to develop methodologies of AI use and to successfully implement it into the regional level healthcare system.

In this article, the authors share their experience in developing a medical AI service using the example of PhthisisBioMed AI service 
and the results of its application in real clinical activities environment. This AI service has shown its quality and reliability confirmed by 
technological monitoring.

Clinical trials of PhthisisBioMed AI service were conducted on a specially prepared verified data set (n=1536) considering epidemiological 
indicators of the thoracic organs major diseases prevalence. The mean sensitivity of the service was 0.975 (95% CI: 0.966–0.984).

PhthisisBioMed medical AI service is registered as a medical device (medical device registration certificate No.RZN 2022/17406 dated 
May 31, 2022) and is actively used in the Russian Federation as a diagnostic tool to reduce the burden on radiologists and to accelerate 
the process of medical report obtaining.
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PhthisisBioMed Artificial Medical Intelligence

Introduction

With healthcare development and increasing medical 
services scope primarily caused by implementation of 

mass clinical examination and primary care, the number 
inevitably increases of diagnostic data to be considered 
to make a diagnosis and to prescribe the treatment.

According to the Rosstat data, the number of annual 



6   СТМ ∫ 2023 ∫ vol. 15 ∫ No.4 

AdvAnced ReseARches

fluorographic examinations increased from 70 million 
people in 2017 to 87.7 million in 2023 (plan of the 
Russian Ministry of Health) [1], while the total number of 
radiologists (phthisiatricians) decreased by an average 
of about 100 people per year.

Processing vast amounts of information to help 
individual patients requires to switch to digital healthcare 
and to create clinical decision support systems (CDSS) 
using big data analytics to optimize care delivery.

Creation of medical artificial intelligence (MAI) 
products with deep computer-based training and 
high technical performance is only possible if medical 
professionals and IT specialists interact closely.

The widespread practical application of MAI has 
made it clear that today’s medical community is sharply 
polarized in its trust in artificial intelligence (AI): from 
sharp, total rejection to unconditional faith and lack 
of minimal skepticism. Attempts to automate, almost 
“mechanize” the physician’s work process often do not 
yield the desired result due to a misunderstanding of 
the range of tasks that MAI can solve and the limitations 
inherent in the very AI concept. The desire of some 
specialists to relieve themselves as much as possible 
of their routine workload often leads to a constant 
unconscious agreement with MAI conclusions.

This article discusses CDSS implementation and 
mass exploitation related to a specific intelligent medical 
service based on AI, and in light of the large ongoing 
Moscow experiment, which includes the mentioned 
service.

PhthisisBioMed medical AI service

Model and architecture
Medical AI service is a software product providing 

the user with a standalone digital medical service. 
It is a complex multi-unit structure containing neural 
network algorithms trained to perform a diagnostic task 
as a rule.

PhthisisBioMed AI service began to develop 
PhthisisBioMed LLC in 2014 and has gone through 
several long cycles of development, improvement, and 
operation. Currently, version 3.3 is in operation. The 
core of the system is its intelligence unit.

Intelligence unit. PhthisisBioMed MAI intelligence 
unit is based on the model of a deep fully convolutional 
neural network adapted to detect and localize 
pulmonary pathologies. The basic architecture for 
PhthisisBioMed MAI neural network was the U-Net 
architecture, which was further modified to better fit 
the task. This issue is discussed in more detail in the 
authors’ previous publication [2]. We shall present here 
the general data of ResUNet model (Figure 1). The 
intelligence unit consists of three such neural networks, 
forming an ensemble.

An additional element is the multilayer classifier, which 
is also a deep-training model. The classifier performs 

Figure 1. ResUNet architecture

the function of separating and recognizing the types 
(classes) of pathologies detected and localized in the 
images which are analyzed by an ensemble of localizers. 
The basic model of the classifier is DenseNet201 [3]. 
Figure 2 shows the result of processing a fluorographic 
image using PhthisisBioMed AI service.

The next most important component of AI service 
structure is the superstructure unit.

Superstructure unit. One of the problems of medical 
image analysis is standardization lack for creation of 
the images themselves. Even if formal regulations exist, 
they are often frameworks.

Lung scans taken while the patient is standing, lying, 
or sitting have different specific properties, and the 
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current clinical state is also important. It is also worth 
remembering that X-ray and fluoroscopy machines 
from different manufacturers have different properties 
and options. All this complicates image analysis using 
neural network models alone to search for abnormalities 
and requires provision of the service with additional 
algorithms which could account for these machine 
features.

The superstructure unit is used to preprocess the 
image before sending it for analysis. This involves the 
following manipulation of the image:

search for the region of interest in the image (in this 
case, the lungs), which implies intelligent (using a neural 
network) and algorithmic segmentation of the organ;

preliminary analysis of properties of the image itself, 
i.e., algorithmic determination whether the image is 
negative or positive along with neural network analysis: 
whether the image itself is a correct sample for analysis 

(whether the image is a radiographic image of the chest 
in frontal projection).

PhthisisBioMed service uses several mechanisms for 
data preprocessing: filtration, brightness characteristics 
of the image detection (negative/positive, range), area of 
interest segmentation.

In addition, an important aspect is the detection of 
foreign bodies in chest images like pacemakers or surgical 
sutures along with any foreign objects caught in the image 
like necklaces. These objects often cause false positives 
in the intelligence unit neural networks. To minimize such 
triggers, a special superstructure model (Figure 3) is used 
to recognize and eliminate false activations generated by 
the intelligence unit neural network.

The last unit is for interaction with the client.
Client interaction unit. This unit is a set of measures, 

algorithms, and interaction protocols to automate the 
service operation during a real clinical process. In 

а b

Figure 2. Result of PhthisisBioMed artificial medical intelligence use:
(a) original image submitted for analysis; (b) analysis result

а b

Figure 3. Use result of the superstructure model designed to minimize false activations on 
foreign bodies:
(a) intelligence block activation without superstructure neural network recognizing activation on 
foreign bodies; (b) result after postprocessing

PhthisisBioMed Artificial Medical Intelligence
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general, the unit allows to create uninterrupted lines 
of examinations processing performed in parallel and 
remotely in relation to the physical location of the service 
server itself. With this unit, it is possible to perform 
remote paralleled analysis and support physicians not 
only in individual medical institutions, but also in medical 
infrastructures on a regional scale in real time.

Training
It is impossible to achieve AI high diagnostic accuracy 

without a training sample labelled with high confidence. 
According to a study by Seoul National University 
researchers [4] on the assessment of radiological 
experts diagnostic accuracy, the area under the ROC 

curve for qualified experts is 0.781–0.907 with a 
confidence probability of 0.95 for localization tasks.

To assess the diagnostic accuracy of the expert 
physicians who labelled the sample for PhthisisBioMed 
service computer-based training, a preliminary study was 
conducted on overlapping samples. Three physicians 
labelled the same sample independently. Then, arbitrators 
from the Central Tuberculosis Research Institute (Russia) 
monitored the labelling results. For each pathology found, 
the arbiter used a special software (Figure 4) to decide 
whether the pathology was present at the image and, if 
so, who of the three labelling physicians located it most 
accurately.

Two district-level and one regional-level examining 

Figure 4. Software for monitoring the results of preliminary examination labelling
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Figure 5. Sample structure for preliminary examination:
(a) sample size and number of labelled masks; (b) sample partitioning (n=861) into “normal” and “pathology”
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physician with more than 15 years of experience 
participated in the labelling.

Two experts labelled 861 images each, one labelled 
only 267 images from the total sample (Figure 5). Each 
expert localized pathologies by labelling a mask at the 
image (more than one mask can be labelled at one 
image).

Binary arbitration results (presence of pathology/
no pathology) for each expert are shown at histograms 
(Figure 6). The regional level physician (expert No.1) 
showed the best results (73.27% sensitivity, 96.72% 
specificity); experts No.2 and 3 showed high specificity, 
99.34 and 99.47%, respectively. These figures may be 
related to the physician’s specialization.

High sensitivity is required to diagnose image 
streams, i.e. with low pretest probability, e.g., in 
fluorographic screening. In mass screening, it is better to 
perform additional diagnostics on a healthy patient than 
to miss a patient with pathology.

High specificity is characteristic of image diagnosis 
tasks with high pretest probability. For example, patients 

with suspected pathology are admitted to the polyclinic 
X-ray room. Insufficiently justified treatment due to 
an erroneous conclusion in this case can lead to side 
effects and additional costs.

Arbitration results by labelling quality are shown at 
histograms (Figure 7). All pathologies (masks) found 
by at least one physician were included in the analysis. 
“Correct” score for the mask was assigned when the 
arbitration concluded that the examiner performed the 
most accurate labelling. “Partially correct” score was 
assigned when the labelled pathology area matched the 
most accurate labelling by more than 50%. “Incorrect” 
score was assigned when the labelled pathology area 
overlapped with the most accurate labelling by less than 
50% (or did not overlap at all). “No pathology” score 
was assigned when the examiner did not confirm the 
pathology at the image.

The analysis of the described study results 
demonstrated low level of convergence of physicians’ 
conclusions both on pathology presence or absence 
and on pathology localization at images. Therefore, in 
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Figure 6. Results of arbitrage on binary conclusions
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order to minimize the number of false labelling results, 
we proposed a method where three differently qualified 
physicians perform the reading and physicians of the 
highest qualification arbitrate their diagnoses.

Considering the results when opinion convergence 
of physicians with long experience was analyzed, 
we concluded that the primary data sample should 
be collected from diversified sources and a group of 
qualified specialists should label them. Low-quality 
images and those not meeting other technical criteria 
should be screened out.

A sample of about 300,000 medical images was 
used to train PhthisisBioMed service basic version. 
However, further research, including the above 
experiment and practical testing of the service, showed 
that the indiscriminate approach to training samples 
was inconsistent, and it was decided to switch to the 
quality-over-quantity approach. Thus, 9593 images from 
the initial sample sequentially selected automatically 
and manually were sent to qualified radiologists with at 
least 14 years of work experience for re-labelling. 4533 
of these 9593 were evaluated as non-pathologic and 
5060 as potentially pathologic. Some of the images were 
then removed from the sample as being controversial 
to the experts. The final baseline training sample scope 
was 8662 images, of which 2904 were normal and 
5758 were pathological. Image labelling activities were 
conducted with participation of specialists from the 
Republican Clinical Anti-Tuberculosis Dispensary and 
other radiology specialists from polyclinics in Moscow 
and the Republic of Tatarstan (Russia).

Validation
Validation (internal) should be a test on a sample 

selected in a special way: first, including all pathologies 
recognized by the MAI; second, including all normals. 
The default normal to pathology ratio should be close 
to 50/50 [5] or should correspond to a known ratio in 
the population which the AI services will be provided 
to [6].

The physicians who labelled the sample shall give a 
consolidated opinion on each image from the sample 
and develop the labelling jointly. All images with 
different opinions are discarded and replaced. After that, 
the reconciliation procedure is also carried out for the 
substituted images. The consilium of sample compilers 
must not coincide or overlap with the training sample 
compilers consilium. The author experience in the 
specialty must be at least 14 years.

A sample of 115 images was used for PhthisisBioMed 
service internal validation (at the time of writing): 52 
without signs of pathology and 63 with various pathology 
signs (types of labelled pathology: 35 infiltrations, 
4 pneumothoraxes, 23 pleural effusions, 4 foci, 2 
disseminations, 13 calcinates, 3 cortical layer integrity 
violations).

To evaluate the service performance, standard 
metrics of diagnostic accuracy were used like area 

Figure 8. ROC curve built on the basis of 115 examinations 
set processed with the service (PhthisisBioMed service 
version 3.2)
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The results significance is determined by the 95% 
confidence interval (CI). DeLong algorithm is used to 
calculate CI for AUCROC [7].

Acceptable sensitivity and specificity values are 
selected as standard by maximizing Youden index to 
maximize overall validity, or by maximizing the negative 
predictive value (NPV) to minimize false negatives.

The Youden index threshold is 0.79. The max NPV 
threshold is 0.79. Internal validation on the data set 
of 115 images achieved an AUCROC value of 95.0% 
(Figure 8).

The Moscow experiment and external validation
At the beginning of 2020, the Moscow Department of 

Health announced it was starting to accept applications 
for participation in the “Experiment on the use of 
innovative computer vision technologies for medical 
image analysis and subsequent applicability in the 
healthcare system of Moscow” (hereafter — Experiment) 
[8]. The regulatory basis for the Experiment was Moscow 
Government resolution No.1543-PP dated November 21, 
2019 and the related order of the Moscow Department of 
Health [9]. The aim of the Experiment was to scientifically 
investigate the possibility of using methods to support 
medical decision-making in the Moscow healthcare 
system based on the results of data analysis employing 
advanced innovative technologies. The Experiment was 
conducted on the basis of Moscow Unified Radiology 
Information Service (URIS UMIAS) platform uniting all 
medical organizations of the Moscow Department of 
Health (~2000 equipment units for radiology diagnostics 
of all modalities) [10]. According to the rules established 
by the organizers, legal entities could participate in the 
Experiment which provide services (software) based 
on computer vision technologies intended to analyze 
medical images for the following examination types:
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Figure 9. Hardware diagram of integration with URIS 
UMIAS

Figure 10. Functional diagram of integration with URIS UMIAS

PhthisisBioMed Artificial Medical Intelligence

chest computed tomography and low-dose computed 
tomography to detect lung cancer;

mammography to detect breast cancer;
lungs x-ray to determine lung pathology;
chest computed tomography to detect new 

coronavirus infection.
On July 27, 2020, PhthisisBioMed service was 

admitted to URIS UMIAS and was put into streaming 
analysis of medical studies. In the early stages, 
activities were carried out together with the Experiment 
organizers to eliminate technical imperfections 
of information systems integration, to develop 
standardization, including mandatory completion of 
unified DICOM tags [11].

In order to solve technical problems and to improve 
the availability of the service for medical specialists, an 
interface was developed to integrate 
heterogeneous systems which 
included hardware and software 
gateways connected to URIS UMIAS 
via different Internet providers, 
which in turn solved the problems of 
hardware and software redundancy 
along with load sharing (Figure 9).

URIS UMIAS architecture implies 
the interaction of AI services with two 
interfaces: unified notification system 
for external interactions (UNSEI) 
and the system of DICOM standard 
medical image transmission and 
archiving (PACS server). UNSEI 
is a URIS UMIAS subsystem 
designed to provide interaction and 
information exchange between 
URIS UMIAS nodes built on Apache 
Kafka platform [12]. This subsystem 
publishes in real time tasks for 

processing the examinations newly received in URIS 
UMIAS for all the subscribers connected to it. See Figure 
10 for the functional diagram of the interface between 
the service and URIS UMIAS.

The load (stream of tasks to be processed) between 
the connected network nodes of one subscriber is 
automatically distributed by UNSEI. The system 
publishes tasks for processing studies for all subscribers 
connected to it. A filtering module was developed to 
ensure that the service could process only the actual 
studies intended for it (with recentness not exceeding 
6.5 min to the moment of being processed by AI as the 
Experiment limitation). The software module reads and 
analyzes syntactically all UNSEI messages recording 
two examination identifiers: not outdated firstly, and 
intended for the service considering the patient modality 
(diagnostic equipment type) and age group secondly.

The hardware/software gateway requests and 
downloads study from the URIS UMIAS PACS server 
after parsing based on study ID.

The resulting DICOM study may contain a series of 
images with different projections (frontal and lateral), 
both negative and positive. To ensure that only correct 
images reach the AI processing, several successive 
checks are required:

analysis of DICOM tags characterizing the image 
modality;

image intelligent analysis using an auxiliary neural 
network to determine whether the submitted image is 
valid for analysis (i.e., whether the submitted image is 
a lung frontal radiographic projection in PhthisisBioMed 
service case);

classification of the image according to the negative/
positive criterion using a deterministic algorithm and 
negative image inversion.

The chest radiograph/fluorogram positive frontal 
projection is sent to the AI for processing and to 



12   СТМ ∫ 2023 ∫ vol. 15 ∫ No.4 

AdvAnced ReseARches

Figure 11. DICOM SC report

Figure 12. DICOM SR report

the neural network which solves the task of lung 
contours segmentation. Then, if the AI concludes that 
a pathology is present, the contours of the detected 
pathology are plotted at the image. The contouring 
result is superimposed on the original image. Otherwise, 

the service gives the conclusion that no pathology 
is detected at the image. The last stage of medical 
image processing is classification of pathological 
signs. To solve this task, an auxiliary neural network 
(classifier) is used, and pathological areas identified 
during localization are fed to its input. These areas are 
extracted from the image and sequentially fed to the 
auxiliary neural network for analysis.

The classifier solves the classification task according 
to 9 pathological signs: pleural effusion, pneumothorax, 
atelectasis, dark focus, infiltration/consolidation, 
dissemination, cavity, calcinate/calcified shadow in 
lungs, violation of cortical layer integrity.

Based on the results of the examination processing 
with the service aid, a DICOM SC report (Figure 11) is sent 
to the radiological information system along with a DICOM 
SR report (Figure 12) and two messages to the UNSEI 
(Kafka) notifying that each DICOM report was sent.

At the final stage of integration into URIS UMIAS, 
a calibration test was conducted, and a decision was 
made to admit the service to the platform based on its 
results. See Table 1 for values of the service diagnostic 
consideration metrics [9] based on the results of the 
calibration test.

Several staging tests on the reference data set 
resulted in 0.965 AUCROC value, 0.92 sensitivity (95% 
CI: 0.87–0.97), 0.94 specificity (95% CI: 0.89–0.99). The 
Experiment procedures and the release of new versions 
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of PhthisisBioMed AI service conditioned tests staging.
Then, PhthisisBioMed AI service was admitted for 

use at examination streams. For automated analysis, 
the service was routed to the results of prophylactic 
chest radiological examinations performed at medical 
institutions of the Moscow Department of Health. In 
real clinical activities environment, PhthisisBioMed AI 
service showed its high quality and reliability confirmed 
with technological monitoring procedures (included 
to the Experiment methodology) and with the service 
inclusion into the top three of the monthly rating among 
the Experiment participants (https://mosmed.ai/ai/).

Clinical trials of PhthisisBioMed AI service

Research hypotheses
The tested hypothesis is formulated according to the 

format described by Korevaar et al. [13]. It is described 
as (with 95% CI) H0: {<0.93 sensitivity and/or <0.70 
specificity}.

Materials and Methods
The performed diagnostic study was retrospective. 

The design and results were described according to 
STARD 2015 methodology [14].

The test methodology [15] is based, but not limited 
to, on GOST R 59921.1—2022 “Artificial intelligence 
systems in clinical medicine. Part 1. Clinical evaluation”.

The index test was performed using the software 
“Program for automated analysis of digital chest 
radiographs/fluorograms according to TU 62.01.29-
001-96876180-2019” produced by PhthisisBioMed 
LLC, Russia (hereafter — PhthisisBioMed software). 
This software is intended for use by qualified employees 
of medical organizations. Its functionality allows to 
position it as a tool to support medical decision making. 
PhthisisBioMed software clinical implementation may 
potentially reduce the time of a doctor’s diagnosis, 
allowing to notice in time pathology signs and 
giving the doctor (medical organization employee) 

T a b l e  1
Calibration test results

Metric Obtained value on data sample
Youden index max NPV

AUCROC 0.965
Accuracy, 95% CI 0.93 (0.89–0.97) 0.93 (0.89–0.97)
Sensitivity, 95% CI 0.92 (0.87–0.97) 0.92 (0.87–0.97)
Specificity, 95% CI 0.94 (0.89–0.99) 0.94 (0.89–0.99)
Specific weight of false 
negative results (%) 0.08 0.08
Specific weight of false  
positive results (%) 0.06 0.06
Optimal threshold 0.65 0.65

PhthisisBioMed Artificial Medical Intelligence

additional time to treat and rehabilitate the patient.
PhthisisBioMed software is indicated to analyze 

digital fluorographic images (X-rays) of lungs in 
anterior-posterior projection and to detect pathologies.

Radiological signs of the following pathologies are 
detected automatically:

1. Type 1 pathologies — conditionally “dangerous”. 
Signs: >1.5 cm infiltration (focus); cavity; pneumothorax; 
hydrothorax; focus; pathological changes of lung roots; 
fluid level; foci.

2. Type 2 pathologies — conditionally “not dangerous”. 
Signs: interstitial changes in pulmonary parenchyma; 
cirrhosis; fibrothorax; changes in pleura; calcinates/
calcification; diaphragmatic hernia; changes in bones; 
chains of metal sutures; foreign bodies; area of increased 
transparency (not cavity); atelectasis; changes in 
mediastinal organs.

No absolute or relative contraindications to the 
software use exist.

The reference test is a verified reference labeled data 
set [16].

To form the initial data set, we used fluorographic 
examination results from URIS UMIAS in accordance 
with the current legislation. All examination results were 
depersonalized in accordance with the established 
procedure.

Initial data were selected from URIS UMIAS according 
to the following parameters: procedure description, 
diagnostic device type, medical organization type, image 
date, patient age. About 400,000 examination identifiers 
were obtained as selection result.

Radiologists’ reports were obtained from URIS UMIAS 
for the selected examinations. These reports were 
subsequently analyzed by key words. Only fluorograms of 
patients over 18 years old were included to the analysis. 
As a result of key word selection, a data set of 5000 
images was obtained for further verification and use in the 
study of diagnostic accuracy of PhthisisBioMed software.

The data set includes the results of fluorography: 
diagnostic images without pathology signs (normal) and 
images with all radiological pathology signs listed above.

After the selected fluorographic findings were 
analyzed visually, the following was excluded: 
questionable images without evident pathology signs 
listed at the manufacturer’s documentation and which 
could not be reliably classified as “normal”; images of 
insufficient technical quality (low contrast, etc.).

The selection resulted in 1536 images containing 
only frontal images of the chest area. Since the tested 
software cannot process lateral projections according to 
its documentation, these images were forcibly removed 
during the verified data set compilation.

The final data set included results of examinations 
performed on diagnostic machines of 18 different models 
(11 manufacturers), 4 of which fell into fluorographer 
category (n=670), the remaining 14 fell into x-ray 
diagnostic machine category (n=866). Next, the data set 
was labelled.
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T a b l e  2
Test data set of images with signs of pathology (n=1126)  
successfully processed using PhthisisBioMed software

Radiological sign
Number  

of images  
containing  

only this sign

Number  
of images  

containing this sign  
along with other signs

Total (subtotal) darkening (compaction)  
of the lung field, including:

infiltration
fluid level

2
1
1

80
48
32

Limited (lobular, segmental, subsegmental,  
multisegmental) lung dark field (infiltration), 
including:

infiltration
fluid level
fibrothorax
cirrhosis

18
15
1
1
1

348
186
126
20
16

Circular shadow of lung localization 33 87
Ring-shaped shadow, including:

diaphragmatic hernia
cavity

20
14
6

110
44
66

Air in pleural cavity 2 74
Foci 17 214
Focal disseminations 1 79
Strengthening and deformation of the pulmonary 
pattern (interstitial changes in the pulmonary 
parenchyma, pneumofibrosis, pneumosclerosis) 76 755
Pleural thickening 18 300
Dilation (± deformation) of lung root shadow/roots 
or displacement of lung root shadow/roots 4 283
Calcinates/calcification of pulmonary  
and extrapulmonary localization 17 147
Traumatic changes of bone structures 24 79
Foreign bodies 34 216
Change of mediastinal shadow 22 438
Site of increased transparency 1 49
Labels total 289 3259

Four radiologists with 9 to 40 years of experience 
participated in data set labelling and verification. Two 
radiologists who analyzed frontal projections labelled the 
data set. One or more radiological signs of pathology were 
compared with each image during inspection. Images with 
no signs of pathology were categorized as “normal”.

According to the analysis results, 393 images out of 
1536 contained no pathology signs. Other 1143 images 
contain labels of one or more pathological signs (in total, 
3304 sign labels on the whole group of images with 
pathology signs). Of these, 291 images contain only one 
label each, and thus these images can be accurately 
assigned to a particular class of pathology signs.

The data set was verified by two radiologists with 
advanced degrees and certificates of good clinical 
practice.

Statistical analysis
The required sample size and statistical significance 

were calculated according to standard methods [17].
Diagnostic accuracy metrics (sensitivity and specificity) 

were calculated using the methodology recommended 
for clinical trials based on AI software [17].

The software accuracy was determined in two stages: 
the first stage assessed the system integral characteristic 
without division into radiological signs, and the second 
stage assessed individual radiological signs accuracy.

The statistical significance of the results was 
determined by 95% CI.

Results
The verified data set (n=1536) was processed using 

PhthisisBioMed software. Average processing time per 
image did not exceed 5 s. Textual reports 
were obtained for 1517 images (98.8%) 
containing information on pathology 
presence probability (p∈[0, 1]) in each 
particular image.

No textual reports were obtained for 
19 images. Therefore, we attempted to 
process them separately. Textual reports 
were neither obtained during the second 
processing, so these images were 
excluded from the verified data set list and 
were not analyzed further.

Thus, the refined verified data set 
contains 1517 images. Of these, 391 
(25.8%) contained no signs of pathology. 
See Table 2 for distribution of radiological 
signs.

Accordingly, 1126 images (74.2%) 
contained 3259 pathology labels. Only 289 
images contained one pathology label; 837 
images contained more than one label per 
image (2970 labels, an average of 3 or 4 
labels per image).

The number of true positive, true 
negative, false positive, false negative 
results was determined, a four-field table 
was created and analyzed along with a 
characteristic curve (ROC curve, Figure 13), 
and T=0.1 optimal value was established 
of activation threshold (cut-off), the value 
against which maximum sensitivity was 
achieved with specificity not less than 0.3 
was considered optimal. At the first stage, 
integral estimation was applied to accuracy 
indicators, and at the second stage — to 
individual radiological signs.

Evaluation of sensitivity and 
specificity integral indices. For a given 
threshold, we obtained the following values 
of accuracy indicators: 0.876 (95% CI: 
0.85–0.89) sensitivity; 0.75 (95% CI: 0.71–
0.78) specificity.
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Figure 13. ROC curve of data set analysis without splitting 
into signs (0.1 activation threshold condition)

T a b l e  3
Signs with ≥0.93 integral sensitivity

Radiological sign Number  
of images

Sensitivity P1 
 by sign 95% CI P1

Statistical  
significance α  

at P0=0.93
Total (subtotal) lung dark field 
(compaction), including:

infiltration
fluid level

48
32

1.0
1.0

0.997–1.0
0.996–1.0

0
0

Limited lung dark field, including:
infiltration
fibrothorax
cirrhosis
fluid level

186
20
16
13

0.989
1
1

0.923

0.97–1.0
0.996–1.0
0.995–1.0
0.78–1.0

10–14

0
0
—

Air in pleural cavity 74 0.986 0.959–1.0 4.4×10–5

Foci 214 0.958 0.93–0.98 0.04
Focal disseminations 79 1 0.998–1.0 0
Pleural thickening 300 0.97 0.95–0.98 4.9×10–5

Calcinates/calcification of pulmonary  
and extrapulmonary localization 147 0.986 0.97–1.0 7.7×10–9

Traumatic changes of bone structures 41 0.90 0.80–0.99 —
Ring-shaped shadow (cavity) 13 0.923 0.78–1.0 —

PhthisisBioMed Artificial Medical Intelligence

All 94 false positive and 139 false negative cases 
were referred to radiologists for re-examination. The 
re-labelling was “blind”: no additional information on 
previous labelling of these images and no information 
on results of processing with PhthisisBioMed software 
was given to the physicians.

Disputed cases were evaluated expertly by working 
group members with a degree in medicine and relevant 
specialization. The experts confirmed that all cases 
not recognized by the software 
were indeed correctly classified 
as “normal” or “pathology” 
during the initial labelling. Thus, 
all recognition errors were 
attributed to incorrect operation of 
PhthisisBioMed software.

Evaluation of indexes based 
on individual radiological signs. 
Since the number of unique images 
was insufficient to confirm most 
signs, an iterative approach was 
used:

1. Radiological signs were 
selected with sensitivity not reaching 
the threshold value according to test 
results.

2. Among them, the sign was 
selected contained in the largest 
number of unique images (this was 
“Pulmonary pattern enhancement 
and deformation” sign (n=76) in the 
first iteration).

3. Sensitivity was determined 
for the selected group of images. 
The index was 0.81. On this basis, 

it was recognized that the diagnostic sensitivity of the 
above sign is insufficient.

4. 76 images were excluded from the analysis being 
unique by this sign.

5. This sign was excluded from the analysis. Besides, 
the images that previously included this sign along with 
some other sign, were now considered to include only 
the other sign.

6. After excluding the images and the sign selected in 
step 2, we returned to step 1.

7. Steps 1–6 were repeated until the integral 
sensitivity of the remaining signs reached the 0.93 value 
declared by the manufacturer. 7 signs were excluded 
(annular shadow (diaphragmatic hernia); lung pattern 
enhancement and deformation (interstitial changes in 
lung parenchyma, pneumofibrosis, pneumosclerosis); 
dilation (deformation) of lung root/roots shadow or shift 
of lung root/roots shadow; foreign bodies; mediastinal 
shadow changes; circular lung localization shadow; area 
of increased transparency) and 371 false negative tests.

Table 3 presents the signs with 0.93 integral 
sensitivity.

The average sensitivity for the remaining sample 
(1183 labels) was 0.975 (95% CI: 0.966–0.984). 
Accordingly, specificity of tested PhthisisBioMed 
software was 0.75 at significance level of 0.023.

The radiological signs presented in Table 3 and 
their associated pathologies were diagnosed with high 
sensitivity. The statistical significance was less than 
0.05, indicating high reliability of the estimate.

Thus, the null hypothesis H0: {<0.93 sensitivity and/or 
<0.70 specificity}:
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1) was rejected for the following signs: infiltration — at 
partial and total darkening; hydrothorax (fluid level) — 
at partial and total darkening; cirrhosis; fibrothorax; 
atelectasis — at partial and total darkening; foci; cavity; 
pneumothorax; foci (dissemination); pleural changes; 
calcinates; changes in bone structures;

2) was accepted for the following signs: infiltration 
(focus); diaphragmatic hernia; interstitial changes in lung 
parenchyma; pathological changes in lung roots; metal 
suture chains, foreign bodies; changes in mediastinal 
organs; area of increased transparency (not cavity).

Particular examples of analysis
To clarify aspects of the study, let us formulate a few 

theses.
1. AI is not guided by auxiliary factors other than 

those that are presented to it, and even of these, it 
operates only with those which it is capable to interpret. 
In other words, if the AI is designed to analyze images, 
that is all it will do. By default, age, sex, blood test 
results, patient history, and other factors are not taken 
into account. If more advanced models or algorithmic 
superstructures are used, some of these factors 
may be considered. However, universality and wide 
coverage of analyzed attributes often come at the 

expense of system accuracy. In the same way, when AI 
is adapted to solve more than one task, e.g. localization 
and classification tasks, the same price would be paid.

2. The AI opinion is a mathematical result, so it 
is often highly subjected to distortion depending on 
the conditions of analysis performing. The initial data 
are very important. Distorted, noisy images or partial 
images of the analyzed organs lead to inference 
“garbage” results. For example, proper patient 
positioning is of paramount importance for AI analysis 
of radiographic images. In addition, even by analyzing 
images of the same patient taken with different x-ray 
machines or even with the same x-ray machine but 
with different settings, MAI may give slightly different 
conclusions.

3. No matter how many times PhthisisBioMed AI 
service analyzes the same examination at the same 
conditions, it will come to the same conclusion within the 
same training iteration.

In view of the above, we suggest paying attention 
to several results of processing examinations of real 
patients using AI.

Example 1. PhthisisBioMed AI revealed an 8-mm 
diameter rounded neoplasm or tuberculous focus at 
a prophylactic fluoroscopy (Figure 14). Further follow-

up examination in the form of CT scan with 
intravenous contrast showed the absence of 
tuberculosis and excluded the malignancy of 
the mass. The most probable diagnosis based 
on CT scan was “benign congenital mass — 
lung hamartoma” (with no pathological tumor 
vascular network feeding the mass).

Example 2. PhthisisBioMed AI found 
changes at the fluorography (Figure 15) 
on both lungs apices. To rule out active 
tuberculosis, the physician referred to the 
fluorographic archive: no dynamics was 
found. An earlier CT scan revealed massive 
pleuroapical layering on both sides. No active 
tuberculosis was diagnosed.

Example 3. PhthisisBioMed AI showed 
darkening of the lateral pleural sinus at the 

Figure 14. Prophylactic fluorography processing using 
PhthisisBioMed service (left) and CT scan results (right)

Figure 15. Fluorography stream 
processing using PhthisisBioMed 
service (right) and CT scan results 
(left)
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left side (Figure 16). First of all, it is necessary 
to exclude inflammatory fluid presence in 
the pleural cavity. This female patient had 
surgery with partial lung resection, which 
caused elevation of the diaphragm on the left, 
shortening and darkening of the sinus on the 
left. The medial structures (heart and vessels) 
were markedly displaced to the left as the 
lung volume was reduced after surgery. Taking 
into account the history of surgery and stable 
radiological picture for three months, it can be 
concluded that inflammatory fluid in the pleural 
sinus at the left side was excluded.

Example 4. PhthisisBioMed AI labeled at 
fluorography (Figure 17) a change of a congenital 
cervical rib form at the left side (it is more often 
a compensated pathology, but occasionally 
neurological symptoms may be present).

Example 5. PhthisisBioMed AI revealed 
at fluorography (Figure 18) consequences 
of pneumonia in the form of linear local 
deformation of the lung pattern in the basal part 
of the left lung. According to the database, these 
cicatricial changes remained without dynamics 
during 6 months.

Example 6. PhthisisBioMed AI labeled 
at fluorography (Figure 19) an area of linear 
deformation of the lung pattern and suggested 
differentiation between disc-shaped atelectasis 
and postpneumonic fibrosis. A CT scan from 
the archive shows the extent of lung lesion 
CT3 at COVID-19 two years prior to the 
present. Conclusion: postpneumonic fibrosis 
at fluorography (although even incomplete 
dissection of lung area with formation of 
fibroatelectasis after massive inflammation with 
formation of rough scar changes, fibrosis in lungs 
is possible).

Example 7. PhthisisBioMed AI revealed 
significant residual changes after a tuberculosis 
history (Figure 20). Further CT examination 
confirmed the changes and ruled out infection 
activity.

The results of the present study showed that 
because physicians’ diagnostic metrics can be 
highly heterogeneous due to their specialization 
and experience, using an individual physician’s 
opinion as a benchmark opinion when evaluating AI 
diagnostic metrics is not appropriate. An objective 
evaluation requires collective opinion.

The nature of physician and AI errors is different, 
while the metrics are comparable. On the one hand, 
AI errors are often obvious to the physician; on the 

Figure 16. Fluorography stream processing using PhthisisBioMed 
service (right) and original image (left)

Figure 17. Detection of congenital cervical rib with the help of 
PhthisisBioMed artificial intelligence (right) and original image (left)

Figure 18. Detection of pneumonia consequences with the help of 
PhthisisBioMed artificial intelligence (right) and original image (left)

other hand, the AI service can focus the physician’s 
attention on a non-obvious pathological area that 
could potentially have been missed by the physician. 
Combining the physician and MAI into a system can 
generate a synergistic effect, expressed as an increase 
in the diagnostic metrics of the physician + MAI 

PhthisisBioMed Artificial Medical Intelligence
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system relative to the metrics of the physician and MAI 
separately.

Studies conducted both within the framework of 
the Moscow experiment (more than 8 million medical 
images processed by 2023) and by international experts 
in recent years clearly demonstrate that the quality of 
AI analysis of medical images is close to the quality 
of experienced diagnosticians work, and this allows 
to look into the future of AI technologies with cautious 
optimism. As a result of a long period of research, 
development, and testing, the viability of CDSS based 
on AI technologies was revealed and proved in practice.

To develop and increase the effectiveness of MAI 
technologies, methodologies for training and testing AI 
products were developed and tested in practice, and 
MAI was implemented into the clinical processes of 
medical institutions.

Conclusion
As part of the Moscow experiment, PhthisisBioMed 

AI service underwent stepwise testing procedures on 
reference data sets. High values were achieved: 0.965 
area below characteristic ROC curve, 0.92 (95% CI: 0.87–
0.97) sensitivity, 0.94 (95% CI: 0.89–0.99) specificity. 

In real clinical activities environment (result streams 
processing of preventive chest radiological examinations 
at medical organizations of the Moscow Department 
of Health), PhthisisBioMed AI showed its high quality 
and reliability confirmed with technological monitoring 
procedures (included to the experiment methodology).

Clinical trials of PhthisisBioMed AI service were 
conducted on a verified data set (n=1536) considering 
epidemiological indicators of the thoracic organs major 
diseases prevalence. In the process of testing, it was 
found that PhthisisBioMed AI diagnostic accuracy 
was unequal for different pathological signs; therefore, 
several of these signs were excluded from the AI service 
capabilities. As a result of clinical tests, the average 
sensitivity of PhthisisBioMed medical AI service was 
determined as 0.975 (95% CI: 0.966–0.984).

PhthisisBioMed is registered as a medical device 
(Registration Certificate of the medical device No.RZN 
2022/17406 of May 31, 2022) and is actively used 
in the Russian Federation as a diagnostic tool to reduce 
the burden on the radiologist and expedite the process 
of obtaining a medical report.
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