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Brain–computer interfaces allow the exchange of data between the brain and an external device, bypassing the muscular system. 
Clinical studies of invasive brain–computer interface technologies have been conducted for over 20 years. During this time, there has 
been a continuous improvement of approaches to neuronal signal processing in order to improve the quality of control of external devices. 
Currently, brain–computer interfaces with intracortical implants allow completely paralyzed patients to control robotic limbs for self-service, 
use a computer or a tablet, type text, and reproduce speech at an optimal speed. Studies of invasive brain–computer interfaces regularly 
provide new fundamental data on functioning of the central nervous system. In recent years, breakthrough discoveries and achievements 
have been annually made in this sphere.

This review analyzes the results of clinical experiments of brain–computer interfaces with intracortical implants, provides information on 
the stages of this technology development, its main discoveries and achievements. 
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Introduction

Brain–computer interfaces (BCIs, neural interfaces) 
allow direct information exchange between the brain 
and the computer with the data transfer to an external 
technical device. Such interfaces include electrodes to 
record brain activity signals, a signal processing system 
(filtering, feature extraction, decoding, classification 
and conversion into a control command), as well as 
a controlled external technical device [1]. In case of 
invasive BCIs, the system can also send a signal 
in the opposite direction: from external sensors to 
neural implants in the cerebral cortex, thus ensuring 
neuromodulation (see the Figure) [2].

In recent years, an extensive evidence base on the 
use of non-invasive BCIs in rehabilitation after stroke 
has been formed [3–13]. Signal recording in such 
interfaces is conducted from the head surface, most 
often using electroencephalographic (EEG) sensors 
or near-infrared spectroscopy (NIRS) during motor 
imagery practice [14, 15]. Non-invasive BCIs allow 

motor imagery practice to stimulate neuroplasticity and 
restore motor function provided that the patient has 
rehabilitation potential [10–13].

The signals recorded in invasive BCIs are the 
local field potential (using extracortical or intracortical 
sensors) and neurons spiking activity (using intracortical 
sensors) [16]. Despite high cost of development and 
research, as well as the need for surgical intervention, 
invasive BCIs are no-compromise means of interaction 
with the environment for completely paralyzed and 
speechless patients, who preserve cognitive functions 
in case of tetraplegia and anarthria or the locked-in 
syndrome of various etiologies. Unlike non-invasive 
BCIs, the evidence base for which includes multiple 
randomized clinical trials and their meta-analyses, the 
clinical application of invasive neural interfaces is limited 
to several dozen cases only. However, almost each new 
case is a scientific breakthrough, and the corresponding 
articles are published in the top-rated journals [17–27].

Currently, low or minimally invasive BCIs with 
extracortical [17, 26, 28, 29] or endovascular 
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[30, 31] sensors are being developed; but advances 
in development of neural interfaces with intracortical 
sensors [2, 32] are of greater scientific interest. The 
obvious advantages of such BCIs include the following: 
1) getting signals of brain activity with the highest 
temporal and spatial resolution; 2) high signal-to-noise 
ratio; 3) the closest or the most precise placement of 
electrodes in the target brain areas; 4) transmission 
of the signal in the opposite direction — from external 
sensors to the cerebral cortex [2, 32]. Due to high, 
one-neuron only, spatial resolution of signal recording or 
neuromodulation, intracortical neural implants allow to 
obtain new data on localization of specific functions in 
the cerebral cortex and the characteristics of its neurons 
functioning [16, 24, 25, 33, 34].

The aim of this review is to analyze and describe the 
capacities of brain–computer interfaces with intracortical 
implants in rehabilitation of patients with severe motor 
disorders. 

Literature search methodology
Literature search was conducted in the 

MEDLINE (PubMed) database using the search 
query: ((invasive[tiab] OR intracortical[tiab]) AND 
(brain-computer[tiab] OR brain-machine[tiab] OR 
“neural interface*”[tiab]) OR intracortical implant*[tiab]) 
AND humans[mh]. Additionally, a literature search 
was conducted in the eLIBRARY.RU system using the 
keywords: “brain–computer interface”, “neural computer 
interface”, “neural interface”. The date of search was 
July 15, 2023.

Articles were selected for analysis based on the 
following criteria: 1) articles or letters to the editor 
published in the peer-reviewed scientific journals; 
2) publications on the use of invasive BCIs with 
intracortical sensors in humans; 3) articles on using BCIs 
to compensate for motor or speech dysfunctions.

Preclinical studies and first experiments

Studies on the use of implanted sensors to record 
signals from the monkey cerebral cortex started in 
the 1960s [35, 36]. In the 1970s, in experiments 
with monkeys, one managed to create a system for 
converting cortical signals into cursor movement in 
real time [37, 38]. The animals were able to control the 
cursor by modulating signals from the motor cortex, even 
without an actual movement. In the late 1990s and early 
2000s, researchers of preclinical studies applied BCI 
systems with robotic limbs as an externally controlled 
device [39–47]. With these technologies, animals could 
feed themselves. After the start of clinical experiments 
of invasive BCIs, animal studies continue to test several 
scientific hypotheses and search for new approaches to 
signal processing [48–57].

It is believed that the first experiment related to control 
of an external device by signals from a neural implant 
in the human brain was conducted in 1963 by British 
neurosurgeon Grey Walter [58, 59]. The researcher 
wanted to test the hypothesis that the intention to 
perform an action is accompanied by certain bursts 
in neuronal activity. Patients, who previously had 
electrodes implanted in the motor cortex of their brain 
for medical reasons, were asked to switch projector 
slides by pressing a button. Here, the button was 
dummy, though the patients were not aware of that. In 
fact, the slides were switched by an amplified signal from 
the neuroimplant. The patients were surprised that the 
slide projector anticipated their actions.

First clinical studies, neurotrophic electrode
In the late 1990s, researchers led by P.R. Kennedy 

were the first to implant neurotrophic electrodes into 
several patients with tetraplegia for long-term recording 
of cortical signals [60–62]. The electrodes consisted of 
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two insulated gold wires inside a glass cone of 1.5 mm 
long and 0.1–0.4 mm in diameter having autologous 
neurotrophic factors. This was a wireless system [63]. 
1.5–3 months after implantation, the neuron processes 
in the cerebral cortex grew into the tip of the electrode 
with subsequent myelination. A few weeks after 
implantation, the first signals could be recorded, and 
within 1.5–3 months the signal became stable. Using 
neurotrophic electrodes, one managed to record a signal 
that remained stable for at least four years [64].

The first implantation of such a neurotrophic 
electrode was performed in a woman at the late stage of 
amyotrophic lateral sclerosis (ALS) [60]. Localization 
of the implantation site, the hand representation area 
in the right motor cortex, was determined using the 
functional magnetic resonance imaging (fMRI) during 
the imagination of hand movements and speech 
articulation. Almost immediately after the neuronal 
activity signal stabilization, the patient learned to 
control the cursor in the vertical direction. The implant 
had been functioning for 76 days — until the last days 
of the patient’s life. Then, the neurotrophic electrodes 
were implanted into other patients with tetraplegia and 
anarthria: in 1998, into a 53-year-old man 3 months 
after he had a brainstem stroke [61, 62], in 1999, 
into a 40-year-old man with a 12-year history of 
progressive mitochondrial myopathy [62], and in 2004, 
into a 26-year-old man who had a 5-year brainstem 
stroke [64, 65]. Using the invasive interface, the first 
of these patients managed to control the cursor in 
various directions on the display, could click the target 
and control the fingers of a virtual hand. The most 
interesting observation for the researchers was the 
ability to control the cursor without the need to imagine 
movements or any other standard brain paradigms: the 
patient controlled the cursor by self-will. Researchers 
associated this phenomenon with neuroplasticity, and 
called the electrode implantation area the “cursor 
cortex” [61]. However, the patient needed six months to 
master the typing skill after stabilization of the recorded 
signal, and the typing speed was three characters per 
minute. At that time, it was already possible to type text 
with the same speed using non-invasive BCIs.

During the experiment, the patient with mitochondrial 
myopathy developed a severe cognitive impairment 
due to disease progression, but was able to control the 
cursor in one direction [62]. 

In 2004, in order to interpret speech-associated 
neural activity, a neurotrophic electrode was implanted 
into a 26-year-old patient with brainstem stroke [64, 65]. 
The implant was grafted into a region of the cortex 
involved in planning the sound articulation. In this BCI 
with a Kalman filter decoder, neural signals generated 
during speech attempts were used to control a speech 
synthesizer. The accuracy of vowel sound reproduction 
by the patient after 25 training sessions was 70%. 

Thus, the studies led by P.R. Kennedy developed 
a methodology to identify a cortical area for sensor 

implantation in patients with plegia and anarthria. 
For the first time, recording electrodes were implanted 
into the human cerebral cortex for a long period of 
time, as well as the researchers demonstrated: the 
electrodes safety and feasibility for using to control 
a cursor, a hand avatar, and a speech synthesizer 
through voluntary modulation of cortical signals 
even years after the plegia onset. Despite the limited 
functionality of the first invasive BCIs, in the late 
1990s the possibility of creating alternative means 
of communication and self-care for patients with 
tetraplegia was shown [60–62, 64, 65].

Early research under the BrainGate project
In the early 2000s, the BrainGate project 

launched a series of clinical studies of invasive 
BCIs. The neuroimplant was an array of 100 silicon 
microelectrodes (96 active), 1.5 mm long, arranged 
in a 10×10 pattern on a 4×4 mm platform (Blackrock 
Microsystems, Salt Lake City, Utah, USA) — the 
so-called “Utah array” [66]. Before that, the microimplant 
had been studied in preclinical studies [67–70].

The first patients to whom BrainGate sensors 
were implanted in 2004–2005 were 25 and 55 year 
old men with spinal cord injury (SCI) at the level 
of the fourth cervical vertebra (C4 ASIA A in line with 
the American Spinal Injury Association scale), which 
had been occurred 3 and 5 years before implantation, 
respectively [18, 71]. Researchers led by J.P. Donoghue 
demonstrated the capacity of this sensor to record 
both neurons spiking activity and local field potentials 
during 6.5 and 11 months (for the first and second 
patient, respectively), as well as the patients’ ability to 
control these signals years after the corticospinal tract 
breakage. Neural decoding in the BCI circuit allowed to 
open e-mail and control the TV using the “neural cursor”. 
The first patient successfully reached 73–95% of targets 
with the “neural cursor”; the average time to reach the 
target was 2.5 s [18, 71].

In further studies involving patients with brainstem 
stroke or ALS, signal processing algorithms were 
optimized, which allowed to reduce calibration time and 
to get a better cursor control [72–74].

Later, it was shown that even 1000 days (2.7 years) 
after implantation, the microelectrode array continued 
recording the signals: the patient demonstrated 
consistently high levels of control quality over five 
consecutive days of the experiment. The rate of 
successful target achievement in this experiment was 
94.9% for the radial and 91.9% for the random target 
location (which exactly simulates the computer mouse). 
Of the 564 tasks, only 37 failed by timeout, but not due 
to cursor navigation errors [75]. These results took 
down the investigators’ concerns about the risk of fast 
decline in the electrodes function due to tissue reaction 
to the implant. By now, the even longer duration of 
functioning have been shown for neural implants [19].
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Robotic arm control

Subsequent studies were mainly related to control 
of an external robotic multi-joint arm to do functionally 
significant movements (Table 1). This type of task 
involved manipulating an object in three dimensions 
along curved trajectory and sequential actions at 
different joints. Compared to cursor control, one needs 
more precise control of speed and movement pattern, as 
well as exact positioning and command planning.

In the experiment of 2012, two patients with 
tetraplegia controlled a multi-joint robotic arm and 
managed to reach out and grasp the target object in 47 
and 62% of attempts [19]. By controlling a robotic arm, 
the experiment participant was able to bring a glass 
of coffee to her mouth and drink it with a straw. Owing 
to the BCI, she had performed a self-care act for the 
first time in 15 years. Despite the 5-year implantation 
period, the electrode array recorded signals sufficient to 
control the robot, but a decrease in their amplitude and a 
drop-down in active electrode channels were observed.

In another study [20], a patient with spinocerebellar 
ataxia had two sensors implanted in the cortical 
area representing finger and forearm muscles of the 
dominant hemisphere. The anthropomorphic robotic 
arm design allowed movements with seven degrees 
of freedom. Already on the second day of training, the 
patient was able to freely operate the robotic arm in 
three dimensions. Over the next 13 weeks, the control 
quality consistently improved. The movements were 
smooth and coordinated, at a speed close to the same of 
a healthy person’s arm. The robot control level allowed 
to perform subtle adjustments and manipulations with 
various balls, cubes, and sticks. On average, the targets 
were successfully achieved in 92% of attempts, and in 
the ARAT test (Action Research Arm Test — a test to 
assess arm movements in central paresis) 17 out of 27 
scores were received with the robotic arm.

In subsequent clinical experiments, researchers 
improved the BCI system architecture and signal 
processing algorithms, which allowed to control a robotic 
arm with 10 degrees of freedom [76], improve the grasp 

T a b l e  1
Main results of clinical studies of neural interfaces with a robotic arm

References Patients BCI features Results
Hochberg et al., 
2006 [18]

M., 25 years, SCI C4 ASIA A which 
occurred 3 years before the experiment 
(MN), 1–9 months after implantation (T2)

1 implant in M1, a linear filter, 
a robotic arm with elementary 
movements

Control of the robotic arm: elementary 
moves with one degree of freedom

Hochberg et al., 
2012 [19]

1) F., 58 years, brainstem stroke which 
occurred 15 years before the experiment, 
1952–1975 days after implantation (S3);
2) M., 66 years, brainstem stroke which 
occurred 5.5 years before the experiment, 
166 days after implantation (T2)

1 implant in M1, 2 types of the robotic 
arm

S3: touching the target object in 76%, 
grasping in 47% of attempts, drinking 
coffee using the robotic arm — 4 out of 6 
attempts;
T2: touching the target object in 96%, 
grasping in 62% of attempts
Average task completion time: 8.5 s

Collinger et al., 
2013 [20]

F., 52 years, SCA, diagnosis set 13 years 
before the experiment, 10–98 days  
after implantation

2 implants in the anterior central 
gyrus, a robotic arm with 7 degrees 
of freedom

Control of the robotic arm with 7 degrees  
of freedom with a success rate of 91.6%; 
15–17 scores for the ARAT test completion 
using the robotic arm

Wodlinger et al., 
2015 [76]

F., 52 years, SCA, 119–280 days  
after implantation

2 implants in the anterior central 
gyrus, a robotic arm with 10 degrees 
of freedom

Control of the robotic arm with 10 degrees 
of freedom; 12–17 scores for the ARAT test 
completion using the robotic arm

Aflalo et al.,  
2015 [25]

M., 32 years, SCI C3–C4 which occurred 
10 years before the experiment,  
16 days–21 months after implantation

2 implants in the posterior parietal 
cortex (imagining the plan for the arm 
reaching and object grasping), robotic 
arm with 17 degrees of freedom 

The ability to control robotic limbs  
with a signal having its source  
in the posterior parietal cortex was 
demonstrated

Downey et al.,  
2017 [77]

1) F., 55 years, SCA, 795–850 days  
after implantation;
2) M., 30 years, SCI C5–C6 ASIA B, 
661–673 days after implantation

2 implants in the anterior central 
gyrus, a robotic arm;
2 implants in the anterior central  
and 2 — in the posterior central gyrus 
(were not used)

Increased BCI performance when 
manipulating with the robotic arm  
due to task optimization

Flesher et al.,  
2021 [23]

M., 29 years, SCI C5–C6 ASIA B  
which occurred 10 years before  
the experiment

Bidirectional BCI: 2 implants  
in the anterior central gyrus and  
2 in the posterior central gyrus, tactile 
sensors in the robotic hand (touch 
and pressure force)

With tactile feedback, the ARAT score 
increased from 17 to 21, the average test 
execution time decreased from 21.0  
to 10.2 s
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quality [77, 79], and reduce the system calibration time 
from 10 to 3 min [80]. Moreover, additional cortical 
areas for electrode implantation were identified as 
sources of signals that were associated with movement 
planning [25]. 

In one of recent studies, the BCI design included 
two robotic arms to perform complex bimanual tasks 
[78]. To control this system, a 30-years-aged patient 
with SCI was implanted with six electrode arrays in 
both brain hemispheres. A semi-automatic system was 
used to self-feed manipulating a fork and knife: some 
specific movements were programmed, and some were 
controlled by brain signals. The patient successfully 
completed 85% of bimanual tasks.

Brain–computer interface with electrical 
stimulation of paralyzed muscles

Electrical stimulation of patient’s muscles by the 
modulation of motor cortical signals ensures a more 
natural reaction of the motor system [81]. By now, 
several studies of invasive BCIs with functional electrical 
stimulation (FES) of muscles were conducted.

First, researchers demonstrated the ability of a patient 
with long-term tetraplegia to control certain movements 
of a virtual arm by using a BCI and simulating the work of 
specific muscles. For motor simulation, the estimated 
parameters of muscle contractile force and arm weight 
were considered [82].

In subsequent FES studies, the researchers 
succeeded in achieving BCI-controlled functional arm 
movements [83, 27]. In the first of them, a participant 
with C5–C6 SCI and over four year tetraplegia managed 
to get control of six different movements of his own wrist 
and hand, and was also able to take a bottle, pour its 
contents into a glass, put the bottle down, and mix the 
contents of the glass with a stirrer on average in 42 s 
[83]. In this study, machine learning algorithms were used 
to process neuronal signals. Electrical stimulation of the 
paralyzed muscles was conducted using 130 electrodes 
in a flexible sleeve, which was wrapped around the right 
forearm. The training continued for 15 months (up to 
three training sessions per week). The average control 

accuracy was 70%. Clinical assessment showed that 
with BCI-FES the patient’s motor abilities corresponded 
to the level of spinal cord lesion of the C7–T1 level, 
which is two vertebrae below the actual damage. This 
improvement is significant in reducing the burden of care 
for patients with C5–C6 SCI, as the majority of them 
require assistance with daily activities, whereas patients 
with C7–T1 SCI can live more independently.

In the next study, a patient with consequences of high 
SCI (C4 ASIA A) was able to successfully drink a cup of 
coffee and self-feed using BCI–FES [27]. The training 
was conducted for 18 weeks with an average of 8 h 
per week. The FES system included 36 transcutaneous 
electrodes to stimulate the muscles of the hand, forearm, 
and shoulder. The “drink coffee” task required a series of 
sequential actions: 1) straighten the elbow; 2) relax the 
grip; 3) take a cup; 4) bend the elbow to bring the cup 
to the mouth; 5) take a sip using a straw; 6) straighten 
the elbow to return the cup; 7) loosen the grip. These 
processes in total took from 20 to 40 s, and 11 out of 12 
attempts were successful.

Bidirectional brain–computer–brain interface
Bidirectional brain–computer–brain interface allows 

not only to record signals from the cerebral cortex, 
but also to modulate its activity. Such an interface 
additionally includes external tactile sensors and 
electrodes implanted in the somatosensory cortex. 
Sensory feedback is of key importance to the majority 
of motor tasks, providing information about the location of 
the limb, about touching an object, and characteristics 
of that object. Sensory and motor functions are not 
independent: the brain creates complex motor plans and 
compares the expected result with the sensory feedback 
in order to appropriately adjust the movement [84].

The advantages of bidirectional BCIs were 
demonstrated in [23]. A patient with C5–C6 SCI had two 
electrode arrays implanted into each of the motor and 
somatosensory cortex of the dominant hemisphere, 
and the touch and pressure sensors were built into the 
hand of the robotic arm in the BCI circuit. The patient 
first learned to control the robotic arm with the visual 

References Patients BCI features Results
Handelman et al., 
2022 [78]

M., 49 years, SCI C5 ASIA B which 
occurred 30 years before the experiment

Bimanual BCI with 6 implants:  
2 implants in each of the anterior 
central gyrus and posterior central 
gyrus of the dominant hemisphere;  
1 implant in each of the anterior 
central gyrus and posterior central 
gyrus, 2 robotic arms,  
semi-autonomous system

85% success rate in bimanual task (eating 
with a fork and a knife)

N o t e: SCI — spinal cord injury; SCA — spinocerebellar ataxia; MN, S3, T2 — patient IDs in the BrainGate project; M./F. — 
patient’s gender; M1 — primary motor cortex. 

End of the Table 1
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feedback only. Then, with the tactile feedback added, 
the quality and speed of the robotic hand movements 
improved within the first four sessions. This was 
quantitatively assessed using the ARAT test, the average 
score for which increased from 17 to 21, and the test 
completion rate decreased by over 2 times [23].

High-performance communication  
neural interfaces

Due to continuous developments in the accuracy, 
speed, and stability of neural cursor control, patients 
with implanted cortical BCI sensors can type text with 
a speed sufficient for communication. However, recent 
advances in neural communication interfaces allow to 
type text or reproduce speech without using a virtual 
keyboard. Over the history of communication neural 
interfaces with intracortical sensors development (in 
2000–2023), the speed of text reproduction increased 
from 3 characters per minute [61], which is comparable 
to the EEG–BCI performance, to 60 words per minute 
[24], which is approximately the speech rate of a healthy 
person (Table 2).

At first, the keyboard layout was optimized to improve 
the performance of communication BCIs for the neural 
cursor control. The radial layout allowed to repeat text 
in the copy task at an average speed of 10 correct 
characters per minute and an accuracy of over 90% [85]. 
Keyboard layout optimization increased typing accuracy 
by 37–65%. These indicators were achieved by a patient 
with a 14-year history of anarthria and tetraplegia during 
three training sessions and a sensor implanted about 
5 years before the experiment [85].

In further studies, optimization of approaches to 
signal processing allowed to achieve more stable control 
quality without the need for regular calibration [86] 
and increase the average typing speed to 39 correct 
characters (8 words) per minute; the maximum speed 
was 40.5 correct characters (9 words) per minute 
without auto-correction [79, 87]. The achieved typing 
speed was inferior to the communication performance 
of a healthy person in normal conditions: the typing 
speed on a smartphone is 115 characters (12–19 words) 
per minute, and the speech rate is 90–170 words per 
minute. However, the achieved speed of typing and 
cursor control allowed several paralyzed patients to use 
a tablet with a standard user interface to communicate 
in emails and chats, make search queries and use basic 
applications [88].

Further performance improvement of communication 
BCIs was achieved by applying a totally different 
paradigm for signal control. A patient paralyzed due to 
SCI imagined that he was writing words with a pen. The 
BCI system successfully learnt to recognize each letter, 
and the typing speed reached 90 characters (18 words) 
per minute with an accuracy of 94% in real time or >99% 
with autocorrection [22]. The paradigm of imagining 
the text-writing procedure turned out to be essentially 
simpler for the signal decoding than controlling the 
cursor movement to select letters. Researchers [22] 
believe that this is due to the fact that handwritten 
letters are easier to be distinguished than point-to-point 
movements as the spatiotemporal patterns of the letters 
neural activity vary more than straight line movements.

Application of another paradigm option — imagining 
typing with fingers on a virtual keyboard with a special 

T a b l e  2
Results of developments and clinical studies of communication neural interfaces with intracortical sensors

References Patients BCI features Results
Kennedy  
et al.,  
2000 [61]

M., 53 years, brainstem stroke which occurred 
3 months before the experiment, 2–17 months 
after implantation

1 (neurotrophic) implant in the anterior central gyrus, 
cursor control, paradigm: imagining of movement, 
then voluntary control

Typing — 3 characters  
per minute

Guenther  
et al.,  
2009 [64]

M., 26 years, brainstem stroke 1 (neurotrophic) implant in the speech articulation 
area on the border of M1 and the premotor cortex  
of the left hemisphere, control of the speech 
synthesizer during the attempts to pronounce sounds

Reproduction of vowel sounds 
with accuracy of 70%

Bacher  
et al.,  
2015 [85]

F., 58 years, brainstem stroke which occurred 
15 years before the experiment, 1589–1925 
days after implantation (S3)

1 implant in the anterior central gyrus, cursor control, 
comparison of the radial and QWERTY keyboard 
layouts

With radial layout, typing 
speed — 10 CSM, accuracy — 
92%; internet chat: 8.1 CSM, 
accuracy — 100%

Jarosiewicz 
et al.,  
2015 [86]

1) F., 58 years, brainstem stroke, 5 years 
after implantation (S3);
2) M., 66 years, brainstem stroke, 4 months 
after implantation (T2);
3) F., 51 years, ALS, 10 months  
after implantation (T6);
4) M., 58 years, ALS, 6 months 
after implantation (T7)

1–2 implants in the anterior central gyrus, optimized 
signal processing algorithms

Typing speed 10–22 CSM 
remained 2 h within several 
days without the need  
for additional calibration 
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symbol layout — allowed to achieve control accuracy of 
95%. However, in terms of typing speed (14 characters 
per minute), this approach was inferior to typing by the 
neural cursor movement or using the imagining writing 
letters with a pen [90]. 

The latest publication to date, which is dedicated 
to neural communication interfaces with intracortical 
sensors, reports the development of a high-performance 
speech neural prosthesis [24]. A patient with ALS, who 

was unable to intelligibly speak, had 2 microelectrode 
arrays implanted in the Broca’s area and 2 in the ventral 
premotor cortex of the dominant hemisphere. The 
patient’s attempt to speak was interpreted by the BCI 
system at a speech rate of 62 words per minute, which 
was close to normal speech rate. After improvement of 
the language model used for word recognition, the error 
rate was 12% for the vocabulary of 125,000 words. This 
was the first successful demonstration of a large word 

End of the Table 2

References Patients BCI features Results
Gilja et al.,  
2015 [79]

1) F., 51 years, ALS, 151–628 days  
after implantation (T6);
2) M., 54 years, ALS, 349–387 days  
after implantation (T7)

1 (T6) or 2 (T7) implants in the anterior central gyrus, 
optimized signal processing algorithms  
and experimental design

Typing speed — 34 characters 
(6 words) per minute

Pandarinath 
et al.,  
2017 [87]

1) F., 52 years, ALS, 570–621 days  
after implantation (T6);
2) M., 54 years, ALS, 537–548 days  
after implantation (T7);
3) M., 63 years, SCI C4 ASIA C which 
occurred 9 years before the experiment,  
55–70 days after implantation (T5)

1 (T6) or 2 (T5 and T7) implants in the anterior 
central gyrus, optimized signal processing algorithms

Average typing speed:
T6 — 32 CSM (6 words per 
minute),
T7 — 13.5 CSM (3 words  
per minute),
T5 — 39 CSM (8 words  
per minute)
Max. speed:
T6 — 40 CSM,
T7 — 29.5 CSM,
T5 — 40.5 CSM

Nuyujukian 
et al.,  
2018 [88]

1) F., 53 years, ALS, 1013–1034 days  
after implantation (T6);
2) M., 51 years, ALS, 218–225 days  
after implantation (T9);
3) M., 63 years, SCI C4 ASIA C, 121–140 days 
after implantation (T5)

1 (T6) or 2 (T5 and T9) implants in the anterior 
central gyrus, signal transmission via Bluetooth  
to control a tablet (e-mail, chat)

Average typing speed:
T6 — 24 CSM,
T9 — 14 CSM,
T5 — 31 CSM
Max. speed  
(w/o autocorrection):
T6 — 33 CSM,
T7 — 15.5 CSM,
T5 — 40 CSM

Simeral  
et al.,  
2021 [89]

1) M., 65 years, SCI C4 ASIA C, 560–588 days 
after implantation (T5);
2) M., 35 years, SCI C4 AIS-A, 307–361 days 
after implantation (T10)

2 implants in the anterior central gyrus (T5)  
or 1 implant in the anterior central and 1 implant  
in the medial frontal gyrus, wireless BCI system  
for home use

Control accuracy: 98% 
(T5) and 95% (T10), typing 
speed — 13.4 CSM (T5)
Reliable signal transmission 
was possible when recording 
within 24 h

Willett et al.,  
2021 [22]

M., 68 years, SCI C4 ASIA C, 1211–1239 days 
after implantation (T5)

2 implants in the anterior central gyrus, control 
paradigm: imagining of the letters writing  
with a pen

Typing speed — 90 characters 
(18 words) per minute
accuracy w/o autocorrection — 
94%, with autocorrection — 
99%

Shan et al.,  
2023 [90]

M., 70 years, SCI C4 ASIA C (T5) 2 implants in the anterior central gyrus, control 
paradigm: imagining of finger typing on a keyboard 
with a specific layout

Typing speed — 14 CSM 
(potentially — 26 CSM),  
control accuracy — 90%

Willett et al.,  
2023 [24]

Patient with bulbar ALS (T12) 2 implants in the ventral premotor cortex and 2  
in the Broca’s area, control paradigm: imagining  
of words pronunciation (articulation) 

Speech rate: 62 words  
per minute, accuracy of words 
recognition — 88% for 125,000 
words vocabulary 

N o t e: SCI — spinal cord injury; ALS — amyotrophic lateral sclerosis; S3, T2, T5, T6, T7, T9, T10, T12 — patient IDs in the 
BrainGate project; M./F. — patient’s gender; CSM — correct symbols per minute; M1 — primary motor cortex.
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stock interpretation using neurotechnology. The source 
of a reliable signal, contrary to classical approaches, was 
not the Broca’s area (area 44), but the ventral premotor 
cortex (area v6). Based on the results of this study, the 
researchers identified two aspects of the neural code 
of speech, which were promising for the speech BCIs 
and were preserved years after the onset of paralysis: 
spatially-varied adjustment to speech articulators, 
which allowed accurate signal decoding from a small 
area of the cerebral cortex, and detailed articulatory 
representation of phonemes.

Conclusion
In recent years, one can see a continuous 

development of invasive neural interface technologies. 
However, while the development and research related 
to non-invasive BCIs is conducted in many countries, 
clinical studies of invasive BCIs, due to the need for 
significant funding, can only be conducted by a few 
research groups in the world. Each year their data 
enrich our understanding of the brain functioning and 
provide new capabilities for rehabilitation of patients 
with severe functional impairment. Such interdisciplinary 
achievements and research of invasive BCIs contribute 
to significant progress in development of both 
neurobiology and information technology. 

Further advances here will be related to the increase 
of speed, accuracy, and multi-task BCI control by 
improving the design of neural implants and their 
biocompatibility; development of methods for obtaining 
biosignals and improvement of algorithms for their 
extraction and decoding [16, 91–100]; adjustment of the 
BCI design for home use [88, 89]. Also, BCI technologies 
are developed to restore locomotion [48] and use in 
pediatrics [101]; visual and auditory bionic prostheses 
are being designed [102]. Due to a gradual integration 
of BCI technologies into clinical practice, issues of 
standardization and bioethics shall unavoidably arise 
[103].

Study funding. The review was performed within the 
framework of the State Assignment of the Ministry of 
Health of the Russian Federation No.122051700017-2.

Conflicts of interest. There are no conflicts of 
interest.
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