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Detection of atherosclerotic plaque from optical coherence tomography (Oct) images by visual inspection is difficult. we developed 
a texture based segmentation method to identify atherosclerotic plaque automatically from Oct images without any reliance on visual inspection. 
Our method involves extraction of texture statistical features (spatial gray level dependence matrix method), application of an unsupervised 
clustering algorithm (K-means) on these features, and mapping of the clustered regions: background, plaque, vascular tissue and an Oct 
degraded signal region in feature-space, back to the actual image. we verified the validity of our results by visual comparison to photographs 
of the vascular tissue with atherosclerotic plaque that were used to generate our Oct images. Our method could be potentially used in clinical 
studies in Oct imaging of atherosclerotic plaque.
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Russian

Обнаружение атеросклеротических бляшек  
по изображениям оптической когерентной томографии  
с использованием метода структурной сегментации

Визуально обнаружить атеросклеротические бляшки по изображениям оптической когерентной томографии (ОКТ) не всегда 
возможно. Мы разработали метод текстурной сегментации для автоматического распознавания атеросклеротической бляшки в ОКТ-
изображениях без использования визуальной оценки. Этот метод включает в себя выделение статистических особенностей структуры 
(метод пространственной матрицы разностей уровня серого — spatial gray level dependence matrix method), применение кластерного 
алгоритма без учителя (K-means) и картирование скоплений/кластерных участков: фон, бляшка, сосудистая ткань и область ОКТ-де-
градированного сигнала в пространстве признака, обратно к настоящему изображению. Мы верифицировали достоверность наших 
результатов с помощью визуального сравнения со снимками сосудистой ткани с атеросклеротической бляшкой, которые использовали 
для оценки ОКТ-изображений. Полученные данные позволяют рекомендовать разработанный метод для применения в клинических 
исследованиях при ОКТ-визуализации атеросклеротических бляшек.

Ключевые слова: оптическая когерентная томография; структура ткани; кластеризация без учителя; атеросклеротические бляшки.

Introduction
Atherosclerosis as cause of cardiovascular diseases.

Cardiovascular diseases continue to be a leading cause of 
morbidity and mortality for both genders around the globe [1]. 
Atherosclerosis is considered to be the underlying cause of 
the majority of cardiovascular diseases [2]. Atherosclerosis 

is a series of immuno-inflammatory events in the arterial 
wall that can lead to the development of lipid laden lesions. 
Plaques may appear with a wide range of morphological and 
anatomical features. The risk for cardiovascular complications 
is strongly linked to the phenotypical characteristics of the 
plaque. Histologically it has been determined that plaques 
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Figure 1. (a) Photographic image of 
vascular tissue with atherosclerotic plaque 
from a 10 month old WHHLML rabbit. 
(b) Raw OCT image at the marked 140th 
B-scan location. (c) Preprocessed OCT 
image at the marked B-scan location. 
(d) Results of our unsupervised clustering 
showing four different classes. (e) Plaque 
detection result shown on the OCT image

with thin collagen caps are more likely associated with 
acute thrombosis due to cap rupture or erosion [3]. The lipid 
burden retained within the plaque portends its lethal poten-
tial  [4]. Despite the importance of the plaque structure and 
biochemical composition, there are few clinical techniques 
that provide this information, in vivo. Angiographic imaging 
methods are extremely good at finding flow-limiting stenotic 
lesions while computed tomography can accurately detect 
calcified lesions. The advent of intravascular ultrasound 
(IVUs) and intravascular optical coherence tomography 
(IVOCT) with their increased spatial resolution, enhanced 
contrast of soft tissues and volumetric imaging capability has 
opened the possibility of studying plaque structure, in-detail, 
in patients undergoing intravascular imaging. In particular, 
OCT with its very high resolution and ability to contrast 
structural proteins such as collagen from lipids seems well 
suited to detect plaque risk stratification. Reliable detection 
of plaque and characterization of its structure with OCT and 

their prophylactic treatment at the time of intervention could 
potentially translate into an improved long term outcome for 
the patient.

Imaging of plaque using optical coherence 
tomography. OCT is analogous to ultrasound imaging 
which uses sound waves to create images with resolution 
of the order of tens of microns. OCT systems create images 
using back-reflection of infrared light instead of sound 
waves, which allows approximately 10 times higher imaging 
resolution than ultrasound at shallower penetration depths. 
The axial and lateral resolutions of OCT are approximately 
5–10 and 15–30 µm respectively.

Many biomedical imaging modalities have been utilized 
to detect plaque pathology. These modalities include 
IVUs [5–7], computed tomography [8–10], and magnetic 
resonance imaging [11, 12]. IVOCT is a minimally 
invasive microscopic imaging technology that has been 
developed for the identification of plaque [13–20]. The 
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first investigation of IVOCT demonstrated its potential to 
perform micron scale tomographic imaging of the internal 
microstructure of in vitro atherosclerotic plaques [21]. 
several features of OCT make it attractive for intra-
vascular imaging, e.g., high imaging resolution, small size 
of fiber-based imaging probes and the availability of image 
processing techniques to extract diagnostic information 
from the resulting images.

studies have shown that using texture analysis, it may 
be possible for OCT to better distinguish different arterial 
structures in OCT images [22–28]. There exists literature 
on atherosclerotic plaque segmentation using IVUs [29, 
30], computed tomography [31] and magnetic resonance 
imaging [32]. However, OCT offers a combination of 
micron-scale morphological imaging with penetration 
depths of 1–3 mm which makes it particularly attractive 
among other imaging modalities. A study was conducted 
comparing OCT–IVUs image pairs obtained from different 

patients [33]. In all cases it was found IVOCT observations 
were more consistent than IVUs. On the basis of these 
findings, IVOCT has emerged as a promising imaging 
modality for extracting plaque diagnostic information.

Texture segmentation of OCT images. Texture 
segmentation is the process of identifying different regions 
within an image based on the different regions’ texture. 
The properties of the texture of an image can be measured 
by its histogram and its statistical moments. There are 
different methods to extract texture features using statistical 
methods. There exists a large body of literature on texture 
feature extraction methods for example, spatial gray level 
dependent matrix (sGLDM) method, grey level difference 
method, grey level run length method, and power spectral 
method. However a study comparing these methods has 
concluded that the sGLDM method is the most powerful 
texture feature extraction method [34]. Recent studies have 
shown that texture analysis can be useful in segmenting 

Figure 2. (a) Photographic image of 
vascular tissue with atherosclerotic 
plaque from a 10 month old WHHLML 
rabbit. (b) Raw OCT image at the marked 
290th B-scan location. (c) Preprocessed 
OCT image at the marked B-scan 
location. (d) Results of our unsupervised 
clustering showing four different classes. 
(e) Plaque detection result shown on the 
OCT image
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Figure 3. (a) Photographic image of 
vascular tissue with atherosclerotic plaque 
from a 19 month old WHHLML rabbit. 
(b) Raw OCT image at the marked 180th  
B-scan location. (c) Preprocessed OCT 
image at the marked B-scan location. 
(d) Results of our unsupervised clustering 
showing four different classes. (e) Plaque 
detection result shown on the OCT image

similar appearing tissue types based on its speckle 
features [35–38].

In this paper we describe a new method to segment 
regions of atherosclerotic plaque and vascular tissue on 
OCT images using sGLDM.

Experimental setup
Animal model. We used myocardial infarction prone 

Watanabe heritable hyperlipidemic rabbits, referred 
as WHHLMI rabbits [39] to obtain samples of vascular 
tissues with atherosclerotic plaque. Arterial sample 
from two WHHLMI rabbits aged 10 and 19 months at 
different locations were obtained (Figure 1–3 (a)). Arterial 
segments of tissue starting from the ascending aorta to the 
external iliac artery were excised from all specimens and 
subdivided into 20–30 mm long sections. This study was 
approved by the local animal care committee at Institute 
for Biodiagnostics, National Research Council Canada 
(Winnipeg, Manitoba).

OCT imaging of vascular tissue sample. We used a 

swept-source OCT (ss-OCT) system to image vascular 
tissue sample from WHHLMI rabbits. The ss-OCT system 
employed a central wavelength of 1310 nm with a sweep 
rate and spectral range of 30 kHz and 110 nm respectively. 
Our ss-OCT unit was configured as a Mach–Zehnder 
interferometer with balanced optical detection.

Methods
Image preprocessing. To achieve a uniform distribution 

of intensities and to improve contrast we performed image 
normalization on each raw OCT vascular image file. This 
was performed by a min–max normalization, defined as

    . (1)

To improve the image quality, we also performed image 
segmentation using automatic thresholding technique. Our 
raw OCT image contained 4 regions: air, plaque, vascular 
tissue and an OCT degraded signal region. This automatic 
thresholding technique is based on Ostu method [40], it 
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d, θ) [45]. These probability density functions P (i, j; d, θ) 
measure the probability that two pixels, located at sample 
distance d and direction θ, have grey levels i and j. To detect 
the atherosclerotic plaque, we extracted 9 texture features 
in two directions: θ=0° and 90° which resulted in total 18 
features with d=1 and from these spatial dependence 
matrices directly. These sGLDM features are shown in the 
Table. Even though these textural image features contain 
information about textural image characteristics of an 
image, it is difficult to identify which specific textural image 
characteristic is represented by each of these features [46]. 
However few of the features have visual definition for 
example F1 (angular second moment) is the measure of 
smoothness of the image. The less smooth a region is, 
the lower its angular second moment. F8 (entropy) is the 
measure of randomness in an image. For smooth images, 
the value of entropy will be low.

An important decision is to choose the size of the image 
window over which sGLDM matrices are calculated. small 
windows may not have enough pixels to accurately capture 
the texture of underlying tissue while too large window may 
contain tissue of grossly different texture. We tried different 
window sizes and found the window size of 63×63 pixels led 
the best results for plaque segmentation from other regions.

computes a global threshold value. This value is further 
used to convert the intensity image into binary image which 
isolates object of interest from its background, leaving out 
two regions as foreground and background. An optimal 
threshold value is selected to maximize the intraclass 
variance of thresholded black and white pixels. We 
employed MATLAB function graythreshold to carry out this 
process. Finally, by multiplying this binary image with the 
original raw OCT image, replaced air with black pixels and 
remaining as tissue region containing plaque and healthy 
tissue.  We also used imfreehand tool in MATLAB to remove 
the water layer and paper tissue on which the tissue sample 
was placed while imaging.

Feature extraction and feature normalization. We 
extracted texture features from our processed OCT vascular 
images using sGLDM method. Features derived from the 
sGLDM method have been widely used for classification 
of tissue images [41–44]. The sGLDM method determines 
the probability of occurrence of specific grey levels as a 
function of pixel position in an image. This method makes 
use of co-occurrence or spatial dependence matrices which 
are texture transforms of the original image. These spatial 
dependence matrices are based on an estimate of second-
order joint conditional probability density functions P (i, j; 

Mathematical expression of SGLDM features

Feature number Feature name Formula

F1, F10 Angular second moment at orientations (θ=0°, θ=90°)

F2, F11 Variance at orientations (θ=0°, θ=90°)

F3, F12 Sum average at angles(θ=0°, θ=90°)
,

where x and y are the coordinates 
of an entry in SGLDM matrix  
and Px+y(i) is the probability 

of SGLDM matrix coordinates 
summing to x+y

F4, F13 Sum variance at orientations (θ=0°, θ=90°)

F5, F14 Sum entropy at orientations (θ=0°, θ=90°)

F6, F15 Entropy at orientations (θ=00, θ=900)

F7, F16 Difference variance at orientations (θ=0°, θ=90°)

F8, F17 Difference entropy at orientations (θ=0°, θ=90°)

F9, F18 Information measure II of correlation at orientations 
(θ=0°, θ=90°)

,
where

N o t e: P(i, j) is the ith and jth entry in sGLDM matrix. Px(i) is the marginal probability of ith entry. 
Ng is the number of gray levels in the images. Py(i) is the marginal probability of jth entry.
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The scale of the texture features has different dynamic 
ranges. To ensure that all the features have similar influence 
on performance of our method, we normalized the entire 
texture feature vector. Each texture feature vector was 
normalized as:

 (2)

where x is the raw feature vector, x- is the mean of all entries 
of x and σ is corresponding standard deviation.

Image clustering algorithm. After texture feature 
normalization, we carried out atherosclerotic plaque 
detection on OCT images using K-means clustering 
algorithm [47, 48], which is popular clustering technique 
due to its simplicity and fast convergence. We applied the 
K-means clustering algorithm on the texture feature space 
to segment the background, plaque, vascular tissue and 
the OCT degraded signal region and then we mapped the 
segmented features back to original image.

The K-means algorithm requires four parameters: 
1) number of segments, 2) a distance metric, 3) initial location 
of segments’ centroids, and 4) a criterion to stop iteration.

As our preprocessed OCT images consist of background, 
plaque, vascular tissue, and an OCT degraded signal region, 
we selected the number of segments, K=4. The knowledge 
of 4 segments was available as a prior knowledge from the 
actual photographic images. We defined distance between 
each segment by a Euclidean distance and initialized 
segment centroids randomly. For each texture feature 
vector, we calculated Euclidean distance from the segment 
centroid. Our criterion to stop iteration was, if the texture 
feature vector was not closest to its own segment centroid, 
it was to be shifted into the closest cluster. Otherwise, the 
feature vector was not shifted. The process continued until 
convergence was achieved.

Image segmentation results and discussion.
Our results show the ability of our method to detect 
atherosclerotic plaque automatically from OCT images. On 
comparing our segmented OCT with photographic image, 
it is clear that there is a close match between the plaque 
locations (Figures 1–3 (a) and (e)). To the unaided eye, it is 
difficult to differentiate the plaque from the remaining tissue 
regions of the raw OCT image.

K-means is considered as the standard unsupervised 
clustering method due to its simplicity and efficiency. The 
main goal of this algorithm is to partition data points into 
different clusters based on its similarities. It also requires 
user to specify the total number of clusters.  In this work, 
we clustered data points based on its similar statistical 
properties from the OCT textural image. We assumed the 
total number of clusters which is 4 as prior information 
from the photographic vascular images.  In future work, 
we aim to investigate different clustering algorithms which 
will not require the user to set a priori so as to improve the 
sensitivity. We also aim to reduce our number of features by 
employing feature reduction techniques and thereby extend 
our method to handle real time applications.

Conclusions. In this work, we implemented an 
automated unsupervised clustering algorithm to detect the 
plaque region from OCT vascular images of arterial tissue 
in an automatic way. This approach mainly incorporates 

sGLDM method and K-means clustering algorithm. Our 
methodology extracts the texture features of the OCT 
vascular images based on their statistics rather than their 
visible structure. Our results show excellent matching with 
actual photographs of vascular tissue with atherosclerotic 
plaque. Our plaque detection approach is a first step towards 
using the texture of OCT images to differentiate plaque 
phenotypes. Linking textural characteristics of lesions to the 
structural integrity of plaques could have significant impact 
to help diagnosis and manage atherosclerosis.
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