
СТМ ∫ 2017 — vol. 9, No.1   175

 reviews 

Brain–Computer Interface and Neurofeedback Technologies:  
Current State, Problems and Clinical Prospects (Review)
DOI: 10.17691/stm2017.9.1.22 
Received October 4, 2016

А.I. Fedotchev, DSc, Leading Researcher, Laboratory of Reception Mechanisms1;
S.B. Parin, DSc, Head of the Laboratory of Psychophysiology²;
S.A. Polevaya, DSc, Head of the Department of Psychophysiology²; Head of the Department  
of Neurophysiology and Experimental Modelling, Central Scientific Research Laboratory³;
S.D. Velikova, DSc, Scientific Consultant, Department of Neurophysiology and Experimental Modelling,  
Central Scientific Research Laboratory³
1Institute of Cell Biophysics, Russian Academy of Sciences, 3 Institutskaya St., Pushchino, Moscow Region,  
 142290, Russian Federation; 
2Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950,  
 Russian Federation; 
³Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005,  
 Russian Federation

Brain-computer interface and neurofeedback technologies are unique techniques to modulate brain activity based on an operant 
conditioning. From the time these technologies appeared in the 60-ies of the XX c., they have become non-drug tools for numerous 
psychiatric and neurologic disorders. However, up to now their efficiency is a matter of debate. Our review considers the background, 
characteristic features and current state of the technologies. The emphasis was made on the analysis of capabilities and prospects of the 
technologies in clinical medicine to mobilize the plasticity mechanisms of brain neural network. The review presents the findings of our 
own experiments showing the future of brain-computer interface and neurofeedback technologies to depend on multi-type cooperation of 
neurologists, neurobiologists, engineers and mathematicians. Effective consolidation of several fields of science will enable to develop novel 
therapeutic regimens to restore and improve neural, cognitive and behavioral functions.
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Brain–Computer Interface and Neurofeedback in Medicine

In the second half of the last century 
neurophysiologists made a breakthrough. They stated 
that the body functions formerly thought as involuntary 
and without self-regulation can under certain conditions 
be human controlled. The main condition is that a 
human by means of various facilities receives feedback 
signals on a current body state. The discovery resulted 
in two independent research lines based on the use of 
feedback signals from human brain potentials to control 
its functions.

The first research trend is based on bioelectric control 
and associated with computer information management 
systems mediating the communication between the 
brain and different devices. The technologies were 
called brain–computer interface (BCI). They enable a 
human to control a computer and other devices using 
brain signals recorded on the head surface in a form 
of an electroencephalogram (EEG), i.e. avoiding data 
transfer by nerves and muscles [1].

The second trend is based on I.P. Pavlov theory of 
conditioned reflexes and its development in the studies 
devoted to human EEG operant conditioning [2]. Due 

to the researches showing the capabilities of voluntary 
rearrangement and overfitting of brain wave patterns 
using a conditioning principle there was formed a 
biocontrol technology with feedback by EEG, or 
neurofeedback (NFB) [3].

Both technologies have common features, as well as 
differences. The presence of common features enabled 
some researchers either to consider them together [4] or 
regard NFB technology as one of the earliest applications 
of BCI technology [5], or its special case aimed at using 
external feedback rather than control an external device 
to model certain aspects of a physiological brain signal 
[6]. The main difference of these two approaches is in the 
ratio of automatic and controlled feedback processing 
of signals from brain potentials. If in BCI these signals 
do not require perception automatically controlling 
operational units, or modeling the parameters of external 
actions, then in NFB, brain potentials are converted to 
informational feedback signals to teach a human for 
conscious voluntary regulation of his own functions.

Currently, there is an intense interest in both research 
trends. It manifested, primarily, in a great number of 
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analytical reviews on various aspects of neurointerfaces 
[7–21]. In addition, over the last 5 years, the publications 
on BCI and NFB in PubMed have increased by 2–3 
times. Such exponential growth of researchers, different 
authors link to inefficiency of conventional techniques of 
pharmacological treatment [22–26], with more thorough 
understanding of brain plasticity mechanisms and 
increasing dissatisfaction with current rehabilitation 
methods [27–29], as well as with rapid growth of 
computational capacities, robotized technologies, 
techniques for brain signal recording and mathematical 
algorithms for their decoding [30].

The abundance of recent publications on the issue 
and a great variety of the methods used make it 
difficult to assess generally the situation in this field of 
knowledge, and distinguish the approaches to the utmost 
appropriate for clinical medicine. The present review has 
summarized the reports in literature over the last 5 years 
on the essence, characteristics and current state of BCI 
and NFB technologies. Particular attention is given to 
the capabilities and prospects of these technologies in 
medicine. The findings of the authors in this field have 
been presented.

Brain–computer interface

Brain–computer interface is a computer information 
management system, which records brain signals, 
analyzes and transforms them into commands coming 
to output devices to perform desired actions. According 
to the definition, BCI is a system measuring the brain 
activity and transforming it into an artificial output signal, 
which substitutes, recovers, triggers, supports, informs 
or improves a natural output signal, and in such a 
way, changes the current interactions of the brain with 
external and internal environments [31].

The year 1973 is considered to be the origin of BCI 
technology, when a term “brain–computer interface” was 
suggested, and there was set a plan of experimental 
studies on human brain-computer interaction [32]. 
However, there is every reason to believe that the 
trend is based on a bioelectric control technique, which 
was formed in 50–60-ies of the last century, and is 
developing rapidly nowadays. It presupposes the use 
of bioelectric potentials generated by human tissues or 
organs for automatic control of various external devices 
[33]. A perfect example of the trend is a pioneer work 
by N.P. Bekhtereva demonstrating a rhythmical photic 
stimulation automatically controlled by the patient’s brain 
electric signals to result in the increase in abundance of 
EEG alpha activity and being the most effective type of 
a functional load than common photostimulation types 
[34]. Subsequently, different variants of this approach 
were used abroad for the treatment purposes, and were 
called “EEG-driven photic stimulation” or “alpha power 
dependent light stimulation” [35–37].

The major goal of BCI technology is in the substitution 
or recovery of useful functions for individuals unable to 

perform them due to neuromuscular disorders, such as 
amyotrophic sclerosis, cerebral palsy, stroke or spinal 
injury [38–41].

Brain–computer interface is one of the most promising 
technologies in the sphere of treatment of neurological 
conditions and injuries. It enables to establish the 
communication between intact brain areas and auxiliary 
devices, which makes it possible to compensate motor 
and sensory functions. For example, the patients 
paralyzed due to spinal fracture, can restore their 
mobility using BCI, which connects neuronal structures 
of the motor cortex with robotic arms, exoskeletons or 
neuromorphic electrogenerators [42]. Moreover, sensory 
BCI can serve to recovery the sensitivity of paralyzed 
body parts by transmitting somatosensory sensations of 
touch, temperature, pain and vibrations in these patients 
[43]. There are some achievements in BCI development 
[44, 45] including those made in Russia [46–50].

In addition to neurostimulators aimed, mainly, at 
motor function recovering, BCI with an auxiliary function 
hold a prominent place in rehabilitation medicine. BCI 
makes it possible for patients, by acts of will, to type on 
a monitor screen, press virtual on-off buttons available 
for their self-maintenance, user devices of hospital 
beds, etc. The complex of such BCI systems assisting 
a patient can be called neurocommunicators, since they, 
in their own way, help a human without any muscular 
movements to choose certain symbols to type a text or a 
command on a computer screen [51, 52].

Neurofeedback

Neurofeedback technology is a computer information 
management system, which enables to modify brain 
biopotentials with an active participation of a patient 
himself. To accomplish this, a current amplitude of a 
certain EEG-rhythm using various computer means is 
reflected in parameters of light and/or audio feedback 
signals showing to a patient in order to teach him a 
conscious brain control of the intensity of own rhythmic 
EEG components to achieve desirable curative effects. 
If a human in real time can hear or see an adequate 
reflection of his own biopotentials, then he has an 
opportunity to learn to change them in a direction 
required. At first the achieved effects are short-term, 
but in the course of training in most people this skill is 
reinforced. Thus, NFB offers auxiliary facilities for non-
drug rehabilitation of various brain pathologies [53].

In general, NFB system consists of five elements 
or processing steps: a brain signal reception, signal 
preliminary processing, distinguishing key features, 
feedback signal generation, and an adaptive training. 
After EEG recording, the data are preliminarily 
processed (e.g., artifact detection, removal, and 
correction), with generation and selection of features, 
and feedback signal computation and notation. The last 
step closes the feedback circuit, where a participant 
attempts to learn to use a feedback signal to change the 
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brain activity according to instructions. All the necessary 
steps are taken on a real-time basis. The distinguished 
features, as a rule, reflect quantitatively the activity level 
of a certain brain area or network, and a feedback signal 
transmits the information on the corresponding changes 
in the brain condition. Participants are trained to find and 
adapt the strategies in order to change intentionally the 
state of their brains in accordance with the preliminary 
instructions [5].

An initial stage of establishing NFB technology was a 
series of researches carried out by Kamiya in the 60-ies 
of the last century, which demonstrated the human 
capability to change voluntarily the intensity of spectral 
components of his own EEG [54]. Subsequently, this fact 
served as the basis for development a number of clinical 
NFB applications to treat many diseases through direct 
rearrangement of electric processes in brain.

The mechanisms of therapeutic action of NFB are 
still unclarified, though many studies are devoted to 
their understanding [55–58]. According to one concept, 
potential mechanisms of NFB are rearrangements 
of neural networks including the increase in their 
global interconnection and neuroplasticity [59]. Other 
researchers consider NFB to perform the adjustment 
of brain electric activity vibrations set up for such a 
homeostatic level, which provides an optimal balance 
between neural network flexibility and stability [60].

By present time there has been gained positive 
clinical experience of NFB application for a wide range 
of diseases. Among them there are attention deficit-
hyperactivity disorder [61–65], learning disability [66], 
stroke [67], traumatic brain injury [68], uncontrolled 
epilepsy [69], substance abuse [70–72], depression [73], 
autism [74], migraine [75], eating disorders [76], pain 
syndromes [77, 78] and other pathologic conditions. It 
should be noted that regardless the origin of symptoms, 
NFB training hold out auxiliary facilities for rehabilitation 
through direct re-education of electric processes in the 
brain.

In literature one can encounter the data on curative 
effects of NFB application in psychiatric disorders, such 
as eating disorders, schizophrenia and psychoses [79], 
to treat the function of executive control in Tourette 
syndrome [80], as well as for recovery and improvement 
of functions in high performance sport [81].

It is worth mentioning that there are conflicting 
opinions on NFB efficiency in the treatment of various 
pathological conditions and disorders. Some authors 
consider NFB to be certainly effective and specific 
cure for epilepsy, attention deficit-hyperactivity disorder 
and anxiety disorders, probably effective — in the 
treatment of brain injuries, drug addiction and insomnia, 
and insufficiently effective — in depressive disorders, 
autism and posttraumatic stress disorders [23]. Other 
authors when studying the reports in literature have 
come to the conclusion that NFB is effective in autistic 
spectrum disorders, drug intervention, and brain injury 
consequences [59]. There is one more group of authors, 

who think NFB to be a potentially clinical tool in severe 
neuropsychiatric disorders: schizophrenia, depression, 
Parkinson disease, etc. [82].

Problems and prospects of brain–computer 
interface and neurofeedback technologies

In spite of international recognition of the topic 
significance, specialized scientific journals, there are still 
a number of problems in BCI and NFB studies requiring 
solution.

For BCI technology optimization, two major tasks 
should be completed. Firstly, there should be selected 
the most dynamic biometric signals with the following 
distinguishing from them reliable markers of human 
mental efforts. The second task is to develop greatly 
individualized schedules of the procedure to form a 
command mental effort, which should result in clear 
and stable changes in the recorded electrographic or 
metabolic indices [52].

A progress is needed in the development of invasive 
and noninvasive BCI, as well as in the development 
of techniques of precisely targeted stimulation of brain 
or sensory channels with high spatial and temporal 
resolution to substitute the lost sensory inputs (e.g., 
touch sensation prosthesis in amputees), an immediate 
correction of dysfunctional networks (e.g., detection and 
mitigation of neuronal activity disturbance) and a long-
term recovery of healthy functional networks through 
the use of brain plasticity neural mechanisms [45]. 
As a result, a new trend in medicine will advance — 
neuroprosthetics, or interdisciplinary research area 
including neuroscience, computer science, physiology, 
and biomedical engineering to substitute or recover 
motor, sensory or cognitive functions that could be 
damaged due to an injury or a disease [83].

There are many pending questions and problems in 
NFB. Some authors emphasize an insignificant number 
of strictly controlled studies and minimal samples used 
in the investigations devoted to different NFB variants 
despite the positive findings [23]. Other researchers 
analyzing the studies on NFB indicate such problems 
as: no adequate selection of an experiment design, 
an inadequate use of controlled conditions and control 
groups of test subjects, the lack of concepts of learning 
mechanisms participating in brain self-regulation [82].

Clinical prospects of NFB are thought to depend 
directly on the solution of the above-mentioned and other 
methodological problems, as well as the wider use of 
modern live brain imaging technologies (e.g., functional 
magnetic resonance tomography in a real-time mode, 
or near infrared spectroscopy). The utilization of the 
technologies using stricter research protocols will enable 
to throw light on in-deep NFB mechanisms, which are to 
contribute to the development of more effective clinical 
applications of neurointerfaces [84].

Two advanced tendencies can be distinguished 
in current studies on BCI and NFB. One of them is 
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related to the use of individually revealed specific 
EEG components instead of overmuch wide-band, 
predetermined traditional EEG rhythms [85]. According 
to some works [63, 86], such approach leads to the 
significant improving of treatment procedure efficiency. 
The second tendency consists in the combination of 
neurointerface technologies with other ones: transcranial 
magnetic stimulation [87] or audio-visual stimulation [88] 
that also improves the efficiency.

Musical neurointerface

One of the major problems in NFB technology is 
that of optimal organization of feedback signals as 
a key factor determining the success in biocontrol 
[89, 90]. However, the most promising approach to 
the organization of NFB procedures is a combined 
exploration focused on the interaction between the 
human brain, body and behavior [91]. The technology 
of musical NFB developed by the authors is just the 
technology combining the utmost individuality of 
biocontrol and the benefit of unconscious perception of 
the stimuli typical for musical therapy [92, 93].

The approach is based on the use of musical or music-
like stimuli, which are organized in strict accordance 
with the current values of patient`s brain biopotentials. 
The characteristic feature of the technique is a musical 
feedback from narrow-frequency EEG-oscillators typical 
and relevant for an individual, and revealed in a real 
time mode based on a specifically developed dynamic 
approach [94–96].

Music is known to be able, on its own, to trigger strong 
emotions, change the mood and help in the treatment 
of psychiatric and neurologic disorders [97]. Music has 
an effect on human brain, basic body functions and 
behavior suppressing stress [98, 99], correcting the 
state of consciousness [100, 101] and serving as a 
universal therapeutic remedy [102]. Music has particular 
efficacy, if being presented according to individual brain 
characteristic of a patient [103–105]. In our situation 
musical impact is organized in strict accordance with 
narrow-frequency EEG-oscillators functionally significant 
for a patient, owing to which treatment procedures 
assume peculiar healing properties [106].

The key advantage of the musical NFB technology 
is the possibility of its application to correct unfavorable 
functional states under conditions, which do not require 
conscious efforts of test subjects. It is of particular 
concern in treatment procedures with children and 
patients with specific psychiatric conditions or those with 
drug therapy contraindicated. Therefore, musical NFB 
technology was successfully tested to correct psycho-
emotional disorders in pregnancy and when watching 
out for labor [107, 108], as well as to eliminate stress-
induced disorders [109]. Currently, there have been 
carried out the studies aimed at eliminating the signs 
of attention deficit-hyperactivity disorder in children by 
means of the present technology [110].

Conclusion

The carried out review of literature shows that, 
currently, neurointerface technologies are coming into 
use in medicine to substitute or recover useful functions 
in people incapable of performing these functions due 
to neuromuscular disorders or injuries, as well as to 
treat a wide range of diseases and disorders without 
medications.

Brain–computer interface technology enables to help 
compensate motor and sensory functions, contribute 
to the recovery of sensitivity of damaged body areas, 
makes it possible to perform an out-patient monitoring 
to detect and prevent potentially dangerous conditions 
(e.g., epileptic seizures). It will provide the recovery 
of some lost functions in paralyzed patients. Due to 
brain–computer interface technology paralyzed patients 
can, by acts of will, type on a monitor screen and press 
virtual on-off buttons available for their self-service 
of devices. Ultimately, by a multi-type cooperation of 
neurologists, psychologists, physicians, engineers and 
mathematicians the mentioned capabilities of brain–
computer interface technology will be completed by 
accelerated education programs and targeted memory 
regeneration that will enable to extend significantly the 
sphere of its clinical application for both diagnostics 
of diseases and screening of risk groups, and also for 
effective correction of various pathological conditions.

Neurofeedback technology was initially oriented on 
clinical applications, and by now it has been successfully 
tested in treatment and correction of a large number of 
diseases and disorders ranging from attention deficit-
hyperactivity disorder and autism to drug addiction 
and immunodeficiency. Despite a number of unsolved 
problems, by now a neurofeedback technology appears 
to be, at least, a very useful supplement for the 
existing treatment facilities. Looking forward, due to the 
development of more perfect research protocols, the 
use of modern technologies of human brain imaging 
and optimal organization of feedback signals (e.g., in 
the form of music), interface technologies can hold key 
positions in clinical practice.
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