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The aim of the study was to assess the capabilities of human genomic DNA biomineralization into ZIF-8 metal-organic framework 
(MOF) preserving DNA sequence integrity after the encapsulation cycle and composite dissolving. The study is an initial stage of the 
project aimed at developing an abiotic vector to be used when working with native nucleic acids of an arbitrary size based on DNA@ZIF-8 
composite. 

Materials and Methods. We studied human genomic DNA isolated from lymphocytes of peripheral blood of healthy volunteers using 
Proba-NK kit (DNA-Technology LLC, Russia). Genomic DNA purity and concentration was estimated spectrophotometrically at 260/280 nm 
using Tecan Infinity 200 Pro plate reader (Tecan Instruments, Austria). ZIF-8 was synthesized in the physiological conditions (37°C) by 
mixing zinc salt and 2-methylimidazole aqueous solutions at different molar ratios. Human genomic DNA was encapsulated into ZIF-8 in 
similar conditions. The obtained MOF and DNA@ZIF-8 composite were studied using X-ray powder diffraction at the Phaser D2 XRPD 
device (Bruker, USA), and the specific surface area was estimated using Autosorb iQ porosimetry analyzer (Quantachrome, USA). The 
encapsulated DNA was quantified by dissolving DNA@ZIF-8 composite in the citrate buffer. DNA integrity was assessed by real-time 
allele-specific PCR (AS-PCR) using the kits for single nucleotide polymorphisms (Lytech, Russia) at the Quantstudio 6 Pro PCR machine 
(Thermo Scientific, USA). In case of using the kits with electrophoretic detection, the amplification was performed on the thermal cycler 
T100 (Thermo Scientific, USA).

Results. The polymer ZIF-8 and DNA@ZIF-8 composite were obtained at different molar ratios of zinc ions and 2-methylimidazole. 
We characterized their structure and specific surface area. Genomic DNA biomineralization efficacy was found to be about 7–8%. PCR 
indicated the integrity of non-selectively chosen loci within the biomineralized DNA. 

Conclusion. The study confirmed the possibility of human genomic DNA encapsulation into ZIF-8 metal-organic framework. After the 
biomineralization, DNA was found to preserve feasibility to be used in studies to investigate genetic constructs. 
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Introduction

One of the most important applied fields in gene 
engineering and therapy is the development of genetic 
material delivery systems [1]. Both biotic and abiotic 
vectors are used as delivery systems. Biotic vector 
systems, among which there are viral and plasmid 
vectors, are applied most frequently [2–8]. They easily 
penetrate through biological barriers, and are able 
to effectively transfect and induce long-term gene 
expression. However, viral vectors exhibit some major 
disadvantages, such as limited working load, the risk of 
carcinogenesis, immunogenicity, toxicity [9].

Among abiotic vector systems there are polymer 
[10], lipid [11, 12], magnetic [13], and gold-based 
nanoparticles [12]. Such delivery systems have a 
number of distinct advantages, in particular, an ability 
to load large-sized components, ease of formation, low 
toxicity, minimal immune response [14–16]. Moreover, 
production technologies of non-viral vector systems 
are easily scaled [17]. However, abiotic vectors are 
characterized to have some drawbacks restricting their 
implementation. So, many biodegradable polymers are 
known for low stability in vivo: e.g., liposomes are prone 
to spontaneous aggregation requiring the introduction 
of stabilizing agents into their structure [18]. In general, 
encapsulation of high-molecular bioorganic polymers 
(proteins, nucleic acids) using polymer and micellar 
carriers is related to practical difficulties due to low load 
efficiency [19], as well as major difficulties in overcoming 
extra- and intracellular membrane, and preserving 
functional integrity of encapsulated bioorganic 
compounds [20].

Recently, there have been the publications devoted to 
the use of metal-organic framework (MOF) as abiogenic 
genetic vectors. Mammalian cells were demonstrated 
[21] to be able to expose these polymers to endocytosis 
and ease the introduction of encapsulated or mineralized 
useful load in target cells, and do away with the need 
of using specialized transformation procedures. 
MOF are chemically and thermally stable, they can 
be formed under biocompatible conditions. One 
more factor to ease targeted delivery of useful load 
is MOF capability to protect genetic material against 
degradation in physiological conditions, and provide its 
controlled release [22]. So, zeolite-like imidazolate zinc-
based MOF ZIF-8 widely used for of biocomponents 
showed its biomineralization efficiency for proteins 
[23, 24], carbohydrates [25–28], viruses [29], and 
cells [30, 31], as well as plasmid DNA, microRNA [32, 
33], nucleoproteins, and the components of genome 
editing systems [34–37]. However, there are no studies 
describing (genomic) DNA included in ZIF-8 and its 
analogues so far. It is worth noting that except high load 
bearing capacity, ZIF-8 is capable of breaking down 
in acid and weak-acid environmental pH [38, 39]. This 
characteristic of zinc imidazolate makes it promising for 
targeted drug delivery [40–45]. Some researchers have 

described the modifications of MOF-based composites 
by specific components, which ease its binding with 
targeted cell receptors, it additionally strengthening the 
potential of these carriers as the means of targeted drug 
delivery [35, 46].

The aim of the study was to assess the 
biomineralization efficiency of human genomic DNA into 
ZIF-8 MOF model in order to study ZIF-8 capabilities to 
work with native nucleic acids of arbitrary size.

Materials and Methods
Chemicals. We used 2-methylimidazole, puriss 

(Merck, Germany); zinc acetate tetrahydrate, extra 
pure (Vekton, Russia); zinc nitrate hexahydrate, extra 
pure (Vekton, Russia); deionized water (resistivity — 
17.8 MOm∙cm); propidium iodide (neoFroxx, Germany); 
citric acid, extra pure (Vekton, Russia), sodium citric acid 
tri-substituted 5.5-hydrate (Vekton, Russia), high-purity 
agarose (Acros Organics, USA), ethidium bromide 
(CDH, India).

Obtaining ZIF-8. Having studied technical 
approaches enabling to synthesize ZIF-8 of high 
crystallinity in physiological conditions [47], we chose 
several techniques performed in aqueous solutions at 
37°C, characterized by using zinc salt anion (i.e. those 
using zinc acetate or nitrate) and different mole ratio 
metal:ligand. Within the framework of the preliminary 
work, we tested the method with the reagent ratio of 
zinc acetate:2-methylimidazole:water equaled 1:1:≥50, 
and described in the work [48]. Despite of high MOF 
yield (over 70%), the obtained product was the mixture 
of crystalline phases, which was unacceptable with 
regard to the present study objectives. Therefore, 
in the experiments to study the characteristic of the 
polymer and its composite, we used three other 
mole ratios of the initial components of zinc nitrate: 
2-methylimidazole:water, namely 1:15≥2000; 1:40:≥2000,  
and 1:60:≥2000 [49]. All experiments had ten 
replications.

Native DNA obtaining and cleaning. Native 
genomic DNA was isolated from human peripheral blood 
lymphocytes using Proba-NK kit (DNA-Technology LLC, 
Russia) according to the manufacturer’s instruction. 
The obtained DNA was kept at –20°C. Before inclusion 
in MOF, we determined DNA purity and concentration 
by measuring optic density at 260/280 nm using Tecan 
Infinity 200 Pro plate reader (Tecan Instruments, Austria) 
with NanoQuant plate (Tecan Instruments, Austria).

Obtaining genomic DNA@ZIF-8 composite. 
Genomic DNA, 800 µl, its concentration being 
400 ng/µl, was added to zinc nitrate solution hexahydrate 
(concentration of 19.8 mg/ml) followed by adding 
2-methylimidazole solution at concentration of 82 mg/ml, 
volume: 1.36 and 3.64 ml, 1 and 4 ml, which enabled to 
obtain the following mole ratios of MOF components — 
1:40 and 1:60, respectively. The obtained suspension 
was shaken using a vortex-mixer for a minute and then 
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incubated for 24 h at 37°C. After incubation, the samples 
were centrifuged for 10 min at 2000 g, the supernatant 
was being separated from precipitate; the precipitate 
was washed by deionized water (5 ml) four times and 
dried at 37°C.

X-ray powder diffraction. The samples were studied 
using X-ray powder diffraction Phaser D2 with 1D 
detector LYNXEYE XE-T (Bruker, USA). The range of 
reflection angles 2θ was 2–35°.

Measuring surface area by Brunauer–
Emmett–Teller method (BET). The measurements 
were performed using porosimeter Autosorb iQ 
(Quantachrome, USA), relative pressure being 
p/p0 9·10–3–0.995, at –196°C. Before the analysis, 
the samples were preliminary degasified in helium 
atmosphere at 60°C within 24 h.

Quantitative assessment of genomic DNA after 
biomineralization. Propidium iodide solution was 
added to 96-well black flat bottom plate (SPL Life 
Sciences, Republic of Korea) containing DNA samples 
under study at the rate of 50 ng/well, and the total 
solution volume: 200 µl/well, incubated for 30 min 
at room temperature, and read fluorescence intensity at 
excitation wavelength of 535 nm, radiation wavelength 
being 617 nm on a plate reader Tecan Infinity 200 
Pro (Tecan Instruments, Austria). The calibration 
function was recorded in DNA concentration range 
0–100 ng/µl adjusted according to the measurements 
of DNA solution optic dentistry, at wavelength 260 nm 
on Tecan Infinity 200 Pro plate reader using NanoQuant 
plate (Tecan Instruments, Austria). The obtained 
ratios of fluorescence intensity dependency on DNA 
concentration were approximated by a linear function 
y=a·x+b, where a and b are constants, y is fluorescence 
intensity, x is DNA concentration, and calculated DNA 
concentrations in the samples according to the formula 
x=(y–b)/a. The calculations were made using Microsoft 
Office Excel 2016.

PCR procedure. PCR was performed to assess DNA 
preservation after biomineralization in MOF ZIF-8. The 
citrate buffer (0.1 М; pH 5.0) was used to completely 
dissolve the composite; the buffer providing complete 
composite dissolving and DNA integrity preservation. 
After composite dissolving, DNA was purified by sorption 
and washing on magnetic particles using NK-Extra kit 
(TestGene, Russia).

Allele-specific PCR (AS-PCR) was performed 
using two methods: a real-time mode on a thermal 
cycler Quantstudio 6 Pro (Thermo Scientific, USA), 
and using electrophoretic detection. Single nucleotide 
polymorphisms (SNP) were chosen in the following 
genes: AGT (rs4762), APOC3 (rs5128), APOE 
(rs429358), IL1β (rs1143627), IL6 (rs1800795), LIPC 
(rs2070895), LPL (rs328), MMP9 (rs11697325), PON1 
(rs662), TNF-α (rs1800629). PCR carrying conditions 
met the manufacturer`s instructions (Lytech Co. 
Ltd, Russia). Electrophoresis was performed in 3% 
agarose gel with ethidium bromide in accordance with 

the manufacturer’s recommendations (Lytech Co. 
Ltd, Russia), DNA fragments were visualized using 
gel-imaging system Vzglyad (Helikon, Russia). SNP 
data were on chromosomes 1, 2, 6, 7, 8, 11, 15, 19, 20 
that enabled to assess nonspecific preservation of DNA 
integrity within a genome. Native DNA was used as 
control.

Statistical data processing. The data were 
statistically processed using Microsoft Office Excel 
2016 with AtteStat 11.5. The data adequacy for normal 
distribution was checked using a modified Kolmogorov 
criterion. Numeric data were presented as “mean 
value ± standard deviation”. To assess specific surface 
area, the correlation coefficient of calculated values was 
calculated automatically by the embedded software of 
Quantachrome ASiQwin 5.21 analyzer. The differences 
were considered statistically significant if p<0.05.

Results and Discussion
ZIF-8 investigation. During the synthesis, the 

samples were analyzed using X-ray powder diffraction 
(Figure 1 (a)). The obtained difractograms showed that 
samples with mole ratio Zn2+:ligand=1:40 and 1:60 have 
the characteristic reflection peaks at angles 2θ equal 8.0, 
9.0, 10.5, 12.9, 14.9, 16.6, 18.2°; they are single-phase 
ZIF-8 samples with sod-topology and the slight share of 
amorphous phase. Moreover, the diffractogram of the 
sample with components ratio of 1:15 had numerous 
additional reflections testifying that the sample was the 
phase mixture.

The next stage included the polymer specific surface 
area measurement by BET method. Figure 1 (b) 
demonstrates the sorption N2 isotherms. The study 
showed the specific surface area for the samples ZIF-8 
with mole ratio of components 1:15; 1:40, and 1:60 
to be 7.0; 1570±132; 1854±173 m2/g, respectively. 
The correlation coefficient of the calculated values 
when using different p/p0 values was in the range of 
0.984–0.999, the difference being significant if p<0.05. 
It should be noted that ZIF-8 used for microRNA 
encapsulation in the study [50] had similar surface 
area (1301.4 m2/g). The authors of the mentioned 
article thought the indicator to be rather high, and 
able to provide efficient effective inclusion of much 
useful load (up to 36 µg/mg of the polymer). However, 
for encapsulation of low-molecular compound, e.g. 
doxycycline, it would be enough to have specific 
surface area 75 m2/g [51].

Thus, the experiment demonstrated the sample with 
the component mole ratio of 1:15 to be characterized 
by low specific surface area. DNA mineralization under 
such conditions is inefficient. Moreover, the specific 
surface area of the other two samples were comparable 
and sufficient to carry out the experiments on DNA 
encapsulation, therefore, at next stage native DNA was 
exposed to mineralization at mole ratios of initial MOF 
components equal to 1:40 and 1:60.

Biomineralization of Human Genomic DNA into a Metal-Organic Framework ZIF-8 
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Figure 2. The study of DNA@ZIF-8 composite samples obtained in different mole ratios of zinc 
nitrate:2-methylimidazole:
(a) standard diffractograms; (b) standard isotherms of N2 absorption

Analysis of DNA@ZIF-8 composite. DNA@
ZIF-8 composites obtained according to the given 
description were studied using X-ray powder difraction 
(Figure 2 (a)). Difractometry data showed synthesized 
composites to have characteristic reflection peaks at 
the angles equal to 7.6, 10.5, 12.8, 14.7, 16.5, 18.0°; 
they were single-phase ZIF-8 samples consistent with 
literature data [48, 49].

The specific surface area of composites was studied 
under the similar conditions compared to those of 
ZIF-8 without DNA. Figure 2 (b) represents the sorption 
isotherms. The research findings showed the specific 
surface area for DNA@ZIF-8 composite samples 
with mole ratio of components 1:40 and 1:60 to be 
524±54 and 715±74 m2/g, respectively. The correlation 
coefficient of the calculated values when using different 

p/p0 values was 0.999, the difference being significant if 
p<0.05. 

Thus, DNA@ZIF-8 composite was found to have 
significant specific surface area decrease compared to 
pure ZIF-8 (see the Table). This fact can be explained by 
including genomic DNA into MOF structure and blocking 
the gas access to pores.
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Figure 1. The study of ZIF-8 samples obtained in different mole ratios of zinc nitrate: 
2-methylimidazole:
(a) standard diffractograms; (b) standard isotherms of N2 absorption

Specific surface area  
of ZIF-8 and DNA@ZIF-8 composite 

Mole  
ratios

ZIF-8 surface area  
(m2/g)

DNA@ZIF-8 surface area 
(m2/g)

1:40 1570±132 523±54

1:60 1854±173 715±74
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Subsequently, dry DNA@ZIF-8 composite was 
dissolved in the citrate buffer (0.1 М; pH 5.0) in the 
volume of 1.6 ml and incubated for 24 h at 37°C. After 
dissolving we remeasured DNA concentration using 
propidium iodide solution. The use of DNA measurement 
using propidium iodide in this case was due to the 
fact that ligand of MOF — 2-methylimidazole, which 
is in excess in regard to DNA, is characterized by 
partial spectrum sorption in the range of 240–280 nm. 
The sorption made it impossible to use 260/280 nm 
spectrophotometry for quantitative DNA assessment in 
the samples in the present experiment [52].

The efficiency of DNA inclusion into MOF was 
calculated as follows:

2 2

1 1

100%,C VX
C V


· ·
·

 

where C1 is DNA concentration before inclusion into 
MOF; V1 is DNA volume before inclusion into MOF; C2 is 
DNA concentration after the composite dissolving; V2 
is the volume of composite solution in the citrate buffer.

The inclusion efficiency of genomic DNA into ZIF-8, for 
the samples with initial components ratio 1:40 and 1:60 
was 8.58±1.50 and 7.94±1.25%, respectively. Moreover, 
there were found no significant differences in inclusion 
efficiency depending on mole ratio of MOF components 
(p>0.05). It should be noted that other authors in their 
studies [20, 50, 53, 54] appeared to achieve next 
higher order values of mineralization efficiency of 
plasmid DNA (46–82%) and microRNA (61–72%), and 
the work [51] demonstrated even higher (up to 90%) 
uploading efficiency of DNA/RNA complexes, which 
was achieved due to the fact that nucleic acids were 
exposed to electrostatic binding to surface articles of 
iron-containing MOF composite and doxycycline, rather 
than encapsulation. It is expected that comparatively low 

degree of DNA biomineralization in the present study was 
due to concurrent processes occurring simultaneously 
with DNA biomineralization itself, and perturbing its 
progress. Such processes include, firstly, the process of 
ZIF-8 independent polymerization, and, secondly, ZIF-8 
nucleation processes around low-molecular compounds, 
which the samples under study had, with their following 
encapsulation. Furthermore, the molecules of plasmid 
DNA or microRNA are characterized by multiply smaller 
sizes and mass compared to a human full-scale 
chromosomal DNA that is likely to ease their building into 
MOF structures.

According to AS-PCR in real-time mode for native 
DNA, we got the amplification curves corresponding to 
the presence of CC genotype for rs4762 polymorphism 
(Figure 3), CG — for rs5128, TC — for rs429358, AG — 
for rs2070895, CC — for rs328, GG — for rs662, and 
in case of electrophoretic detection — the findings were 
the following: genotype GG — for rs1800629, GG — for 
s11697325, CC — for rs1143627, GC — for rs1800795 
(Figure 4). After DNA@ZIF-8 composites dissolving 
(the mole ratio of the components is 1:40 and 1:60) and 
performing PCR, the results were consistent with the 
genotype of native DNA in all the samples under study. 
AS-PCR findings confirmed the presence of randomly 
chosen DNA areas within the genome boundaries in the 
samples after biomineralization into ZIF-8. It indirectly 
indicates the significant part of genomic DNA was 
preserved during the encapsulation MOF destruction, as 
well as the capability of ZIF-8 to include encapsulated 
DNA sequences of larger size. Further, such sequences 
can be used in research to study and form genetic 
constructs, particularly, vectors, probes, components of 
gene editing systems, gene-therapy means, etc.

Encapsulation of genomic DNA into ZIF-8 
distinguishes the present work among similar 

1:40
1:60
Control

Mole ratio of Zn2+:ligand

Cycle number

Fl
uo

re
sc

en
ce

 (a
.u

.)

Figure 3. Amplification diagram of SNP rs4762 after biomineralization and dissolving DNA@
ZIF-8 composites in a citrate buffer
Ct threshold cycle equals 21.5 (control), 23.1 (mole ratio 1:40), 23.8 (mole ratio 1:60)
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publications, in which nucleic acid fragments of fixed 
size were exposed to encapsulation [35–37, 55–57]. 
Confirmed feasibility of genomic DNA encapsulation 
through PCR genomic loci localized on different 
chromosomes makes this approach highly promising 
in the context of developing abiotic vectors for genetic 
material delivery. In particular, the capability of 
encapsulation of large-sized nucleic acids widens the 
potential of recombinant RNA technologies relieving 
the constraints on the useful load size typical for 
plasmid, cosmid, and viral vectors. However, relatively 
low efficiency of genomic DNA mineralization is not 
a barrier for further selection of targeted loci from the 
preserved genomic DNA, their cloning, modification, 
and other operations accompanying the development 
of recombinant sequences [32]. Moreover, the use of 
this non-toxic MOF as a carrier enables to “cushion” 
the problems with stability, toxicity, and immunogenicity, 
which is typical for other abiotic vectors. Thus, the study 
findings are of great importance for further development 
of research methodology in molecular genetics and gene 
engineering.

Conclusion
The present study demonstrated the possibility 

of native DNA biomineralization into a model MOF 
ZIF-8. Optimal mole ratios of MOF components (Zn2+: 
2-methylimidazole) for DNA biomineralization were 
found. The study of DNA@ZIF-8 composites by X-ray 

powder difractometry showed DNA to have no effect 
on crystalline structure of zinc 2-methylimidazole. 
Porosimetry enabled to demonstrate threefold decrease 
of the composite surface area compared to pure MOF, 
which is likely to be due to DNA inclusion. If mole 
ratios of the components were 1:40 and 1:60, the 
efficiency of genomic DNA encapsulation was found to 
be 8.58±1.50 and 7.94±1.25%, respectively, it providing 
DNA preservation in the amounts sufficient for further 
procedures. No significant differences between these 
mole ratios were revealed. The performed PCR analysis 
of arbitrary DNA loci after biomineralization and the 
composites dissolving demonstrated their preservation.

The findings indicate the approach prospectivity to 
develop vectors for delivering nucleic acids of arbitrary 
sizes and give grounds the feasibility of further studies 
in the field.

Study funding. The study was carried out using 
budget funds under terms of State task, registration 
No.122020100109-6, in Samara State Medical 
University (Russia).
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