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Owing to the advances of neuroimaging techniques, a number of functional brain networks associated both with specific functions 
and the state of relative inactivity has been distinguished. A sufficient bulk of information has been accumulated on changes in connectivity 
(links between brain regions) in psychopathologies, for example, depression, schizophrenia, autism. Their genetic markers are being 
actively investigated using a candidate-gene approach or a genome-wide association study. At the same time, there is not much data 
considering connectivity as an intermediate link in the genotype–pathology chain, although it seems to be a reliable endophenotype, since 
it demonstrates a high stability and high heritability. In the present review, we consider the results of investigations devoted to the search 
for biomarkers, molecular and genetic associations of functional, partially anatomical, and effective connectivity. The main approaches to 
the evaluation of connectivity neurogenetics have been described, as well as specific genetic variants, for which the association with brain 
connectivity in psychiatric pathologies has been detected.

Key words: connectivity; fMRI; EEG; genome-wide association study; heritability; neural network; neurogenetics.

How to cite: Proshina E.A., Deynekina T.S., Martynova O.V. Neurogenetics of brain connectivity: current approaches to the study 
(review). Sovremennye tehnologii v medicine 2024; 16(1): 66, https://doi.org/10.17691/stm2024.16.1.07

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).

Corresponding author: Ekaterina A. Proshina, e-mail: eproshina@hse.ru

Introduction

Assessment of brain regions activity synchronization 
makes it possible to distinguish sufficiently stable 
networks of functionally connected regions associated 
with spontaneous brain activity and with a goal-directed 
behavior. The assumption of the existence of a specific 
genetic substance related to functional connectivity 
has been confirmed by the recent studies. Associations 
have been found between the parameters of the brain 
structures determined with various functional diagnostic 
methods and genetic polymorphism and/or gene 

expression. Taking into account a wide spread of brain 
connectivity assessment techniques, it may be supposed 
that in the nearest future, patterns of connectivity may 
be used in diagnostic purposes in clinical practice. 
Besides, sufficient information has been accumulated 
on the links between brain regions in psychopathologies. 
There are multiple studies aimed at the detection of a 
genetic background of psychiatric diseases. However, 
data considering connectivity as an intermediate link in 
the genotype–pathology chain is not plentiful, although it 
seems to be a reliable endophenotype, since it shows a 
high stability and high heritability.
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The present review considers the most important 
concepts, methods, and theories, and informs about 
the most common genetic markers of alterations 
in functional connectivity in psychopathologies 
encountered in the literature. Since the genome-wide 
association study method is increasingly being used and 
there is a broad diversity of candidate genes explored in 
relation to brain connectivity and psychiatric/neurological 
disorders, it is not possible to cover all the problems 
within the frameworks of a single review. However, the 
analyzed material will help the specialists from different 
fields of medicine, psychology, neurosciences, who are 
not engaged in searching for genetic markers, to get an 
idea about this area of investigations.

The PubMed, eLIBRARY.RU databases and Google 
Scholar search engine were used in the process of our 
work. Searching was performed using the following 
key words and their combinations: “brain connectivity”, 
“genetic marker”, “genetics”, “genome-wide association 
study”, “polymorphisms” (without reference to the year of 
publication). Papers published from 1989 to 2022 were 
included into the review. All in all, 90 works have been 
examined.

Materials and Methods
The aim of this work was to review the investigations 

devoted to the search for biomarkers, molecular 
and genetic associations of functional (and partially 
anatomical and effective) connectivity.

The structure of the article. Part 1 is devoted 
to the analysis of the current approaches to the 
estimation of human brain connectivity and instrumental 
methods used for this aim. Reasons are given, why the 
assessment of brain connectivity is a promising potential 
marker of psychiatric diseases.

Part 2 contains information on the contribution of 
heritability to the patterns of structural and functional 
connectivity.

Part 3 considers molecular genetic markers of 
functional brain connectivity.

Part 4 overviews the studies of genetic associations 
of brain connectivity in pathology.

1. Brain connectivity as an endophenotype
As the amount of neurons is enormous and the 

number of synaptic contacts is still much greater, 
the complexity of brain communicative structure at the 
tissue level defies currently formal description [1]. 
Rapid development of neuroimaging techniques in 
the early twenty first century initiated the study of 
functions of not only separate brain regions but the 
anatomical and functional networks as well. Anatomical 
links of the brain regions provided by the white matter 
tracts are called structural (anatomical) connectivity. 
Anatomical connectivity may be assessed by diffuse 
tensor imaging using MRI (DT-MRI). The term “functional 

connectivity” denotes the activity of definite brain regions 
synchronized in time in the process of performing a 
specific task or in the resting state [2, 3]. Functional 
connectivity is supposed to mediate the information 
processing in the brain. 

When studying structural and functional connectivity, 
it has been found that links between the regions of 
interest typical for fulfilling cognitive/behavioral functions, 
reflect more likely statistical relationships and not always 
correspond to anatomical connections [4]. Although 
functional connections in a resting state are changeable 
and are present between the regions without structural 
connection, their strength, stability, and spatial statistics 
are, nevertheless, limited by a large-scale anatomical 
structure of the human cerebral cortex [5]. For the 
first time functional connectivity was examined using 
functional MRI (fMRI), possessing high spatial resolution 
(up to 1 mm3) [6], and positron emission tomography 
(PET). Presently, the development of analytical methods 
allows visualization of functional networks based on the 
EEG data both at the levels of a sensor and cortical 
generators.

In addition to structural and functional connectivity, 
there is effective connectivity, suggesting causal 
relationships between the brain regions in the process 
of performing specific functions [7]. A high temporal 
resolution of electro- and magnetoencephalography and 
the fact that their signals depend on electrophysiological 
activity of neurons determine the priority of these 
methods in estimating effective connectivity, however, 
conclusions must be interpreted keeping in mind existing 
constrictions.

Data on the number of networks functioning in the 
human brain are controversial, however, the following 
networks have been well-established: default mode 
networks (DMN), the only network, whose activity 
increases in the absence of purposive activity; and the 
networks positively connected with the tasks: visual 
network (VN); somatomotor network (SMN); dorsal 
attention network (DAN); ventral attention network 
(VAN); fronto-parietal control network (FPN) or central 
executive network; limbic network (LN); saliency network 
(SN) [8, 9]. The detailed topological analysis allows the 
selection of 15–20 neural networks whose activity is 
associated with motor control, perception of sensory 
information, and episodic memory, spatial orientation, 
implementation of verbal functions [10]. Neural networks 
are interconnected, and the sets of the regions involved 
in them may partially overlap. A certain level of hierarchy 
between the networks maintains realization of functions. 

Functional networks are a convenient object for 
exploration since they can be analyzed with a great 
variety of mathematical tools. In addition to determining 
the strength of connections between the brain regions 
using the analysis of phase-frequency characteristics, 
one of a widely used approach is a graph analysis, 
which allows the selection of metrics characterizing the 
network architecture.
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In the current research studies, brain connectivity 
and graph metrics are suggested to be endophenotypes 
during investigations of associations between genes 
and clinical symptoms or behavioral manifestations. The 
literature data confirm that exploration of associations 
of a candidate gene with brain activity patterns (using 
neuroimaging) is an easier task than studying a direct 
effect of a gene on the behavioral phenotype [11]. 
Besides, it should be taken into consideration that 
clinical symptoms are a final manifestation of the disease 
process, therefore, data on functional connectivity 
and the identified genetic associations may serve as 
a valuable material for timely detection of pathology. 
Searching for patterns of connectivity and its genetic 
markers is of practical use for translational medicine and 
for studying the mechanisms of variability of personal 
and situational behavior in norm and in pathology [12–
15]. It has been found that psychopathological states are 
often characterized by changes in functional connectivity 
[12–14].

Thus, considering connectivity as an endophenotype 
represents implementation of the systemic approach 
in neurobiology and provides the possibility of studying 
the effect on behavior/clinical symptoms of a genotype 
mediated by specific patterns of activity/anatomy of the 
brain.

2. Heritability of structural  
and functional connectivity

At first, to assess the influence of genetic factors, 
emphasis was placed on the exploration of structural 
connectivity. The analysis of genetic correlations and 
quantitative trait loci (QTL) pointed to the hereditable 
nature of fractional anisotropy reflecting the directions 
of axonal tracts. The linkage of fraction anisotropy and 
radial diffusivity with region D15S816 on chromosome 
15q25 and region D3S1754 on chromosome 3q27, 
respectively, has also been demonstrated [16]. It 
should be noted that these loci were associated with 
mental disorders such as depression and obsessive-
compulsive disorder. A significant link of the regions of 
the chromosome 15q22-q23 and anatomical connectivity 
has been shown [16]. 

The investigation, combining DT-MRI and genome-
wide association study (GWAS), performed on a large 
sample of monozygotic and dizygotic twins, has shown 
association of polymorphism in genes dlgap2 and 
spon1 with structural connectivity in the cortex [17]. 
The proteins Spondin 1 (SPON1) and DLG associated 
protein 2 (DLGAP2) translated by these genes are 
involved in the processes of intercellular matrix 
structuring and cell adhesion, influencing intercellular 
contacts during the implementation of structural 
connections. Besides, there have been found significant 
associations of structural connectivity and structural 
integrity of the white matter with polymorphism of the 
genes of brain-derived neurotrophic factor (BDNF), 

NTRK1-receptor for nerve growth factor (NGF), 
catechol-o-methyltrasferase (COMT), clusterin (CLU), 
ErbB-2 receptor tyrosine kinase 4 (ErbB-4), homeostatic 
iron regulator (HFE) [18].

The comparison of data on a heritable polygenic 
nature of schizophrenia and autism and on intensive 
disorder of structural connectivity of the cerebral cortex 
in these diseases [19, 20] encouraged us to think that 
functional connectivity may also have genetic correlates 
[21–23]. A general scoring of heritability of functional 
connectome h2 is 0.42–0.60, which demonstrates 
the contribution of genetic factors to the formation of 
connectome endophenotype [21, 24, 25].

The majority of studies in the field of connectome 
neurogenetics apply graph theory and evaluate the 
effects of genes exactly in relation to the metrics 
of neural networks [18, 26]. Graph analysis allows 
for computing the metrics such as characteristic 
path length, clustering coefficient, modularity, global 
efficiency, small-world structure, which are interpreted 
in terms of information transfer efficiency in the network 
[27–30]. Studies of monozygotic and dizygotic twins 
have shown that in various EEG frequency ranges, 
46–89% of individual differences in the clustering 
coefficient and 37–62% of individual differences in 
the characteristic path length are inheritable. This 
allows us to express assumptions that graph metrics 
are promising markers of genetic differences in brain 
functioning [31].

The studies based on graph analysis have found 
that the efficiency of the rich club modules (brain 
regions possessing the greatest amount of connections) 
and a global architecture of networks are most 
sensitive to polymorphism or gene expression [32], 
in particular, genes, encoding proteins, which provide 
reactions of central metabolism and implementation 
of electrophysiological properties of neurons. This 
assumption is consistent with the results of systemic 
analysis, which indicate a high heritability of global 
connectivity in comparison with local [33].

It has been found that during the performance of a 
task involving working memory, the brain of the healthy 
participants corresponds to the structure of the “small 
world” in the alpha, beta, and gamma ranges of the 
EEG, whereas in the group with schizophrenia no such 
correspondence was observed, suggesting disorders 
in the organization of neural networks in patients with 
schizophrenia [34]. 

Investigations of functional networks using EEG are 
often focused on the study of spontaneous brain activity, 
since high heritability of human resting-state EEG 
characteristics has been confirmed [35]. Functional MRI 
(fMRI) has shown that individual spontaneous neuron 
activity in the resting state correlates with the activity 
of functional networks involved in the cognitive tasks, 
suggesting that resting-state activity patterns can 
be studied as endophenotypes of cognitive abilities 
[36, 37].
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3. Approaches to identifying molecular  
genetic markers of functional brain connectivity

Connectome neurogenetics is assessed in four 
experimental paradigms of associative research. 
The following associations are estimated: candidate 
phenotype–candidate gene association (CP–CGA), 
or candidate phenotype–genome-wide association 
(CP–GWA), or association between any changes in 
neuroimaging data and gene (at the level of a voxel 
or the region of interest), i.e. brain–wide, candidate 
gene association (BW–CGA), or between any changes 
in the neuroimaging data and multigenome data, i.e. 
brain-wide–genome-wide association (BW–GWA) [38].

A specific candidate gene or a single nucleotide 
polymorphism (SNP) may be chosen as a molecular 
genetic parameter, or GWAS data may also be used. 
However, in the second case, the analysis can be carried 
out using data of lower dimensionality compared to the 
initial set of parameters [39].

Thus, SNPs may be ranked and grouped using 
various approaches, for example, clustering based on 
the analysis of functional identity [40–42], transforming 
in this way a set of univariate data to multivariate. 
Considering the specificity of biological samples, public 
data sources are usually used for brain transcriptome 
analysis, such as data from the Allen Human Brain Atlas 
(AHBA) or the UK Biobank [43, 44].

Imaging data of neural tissue activity may be analyzed 
using a voxel-wise approach for the whole brain volume 
[45]. In the visualization domain, voxel is a minimally 
possible estimated volume of a 3D image. While this 
approach has the potential to identify new significant 
associations, the high granularity of the data makes it 
impossible to assess the connections between separate 
cortical regions. Besides, testing statistical significance 
of associations requires sufficient computation power to 
make multiple comparisons (in case of BW–GWA it is 
about 1010). The initial high visualization dimensionality 
of data may be reduced if associations are analyzed in 
relation to the regions of interest, which are determined 
either according to a certain parcellation algorithm 
(seed-based approach) [46], or within the frameworks of 
the existing researchers’ hypothesis. 

It should be noted that, in this case, conceptual 
imperfection of the approach to the estimation of 
interconnection between the pattern of connectivity and 
genetic markers is caused by variability in the methods 
of brain region parcellation, i.e. segregation of the 
modules, which are integrated into networks, and also 
by interindividual variability and dynamism of these 
functionally delineated regions [47–49]. Therefore, for 
better comparability and reproducibility of the results, 
delineation of the brain regions, which are the regions of 
interest of the main neural networks such as DMN, dorsal 
attention network, and others, is often used as a scheme 
of parcellation. Definitions are also made using functional 
atlases of the parcellated regions on the basis of the 

regional functional connectivity on a large volume of fMRI 
data obtained from healthy volunteers [50].

4. Investigations in the genotype–connectivity–
phenotype paradigm

A large pool of researches is devoted to the effect of 
candidate genes on brain connectivity in schizophrenia. 
Zhang et al. [51] evaluated the effect of the nrgn 
gene (rs12807809) polymorphism on the connectivity 
of the hippocampal formation in 59 patients with 
schizophrenia and 99 healthy subjects. Neurogranin 
(Nrgn) protein encodes the substrate of postsynaptic 
protein kinase C, binding to calmodulin in the absence 
of calcium, and polymorphism of its gene is associated 
with schizophrenia. Changes in functional connectivity 
(measured as the correlation of activities in the 
hippocampus and cortex or subcortical structures) in 
schizophrenia have been found to be associated with 
polymorphism of the nrgn gene.

The role of the COMT gene polymorphism is well 
known in relation to schizophrenia [52, 53], including 
determination of cognitive impairment level [54]. The 
val108/158met polymorphism is significantly associated 
with the reduction of connectivity in the cortex of 
healthy individuals (n=22). At the same time, the level of 
cognitive functions, measured by diverse tests, did not 
differ in the carriers of various alleles (n=496–1218) [55].

Using fMRI images of 800 healthy individuals and 
the GWAS method in their later study, Zhang et al. [42] 
separated 90 cortical regions and 7 resting-state neural 
networks and analyzed associations with the levels 
of local gene expression. The results have shown 
that the majority of significant functional connections 
between the regions (78%) referred to the pool of 
interaction within the brain neural networks, while a 
share of internetwork connectivity was 22% of the total 
number of connections. 125 genes, whose expression 
was significantly associated with connectivity, 
referred to the clusters of dendrite growth regulation, 
response to the external stimulus and signaling 
pathways of metabotropic receptors, secretion and 
transport of the protein, regulation of the intracellular 
calcium pool (among the newly identified were 
genes mcub, doc2b, pipor2, adtrp, ifnlr1, pmepa1). 
Expression of 51 genes was common for connectivity 
of all considered neural networks. All these genes 
referred to the cluster of regulation of action potential, 
ion transport and homeostasis, metabotropic receptor 
signaling, energy metabolism, and immune response. It 
is notable that 17 of 51 and 34 of 125 detected genes 
were associated specifically with schizophrenia rather 
than with other disorders (for example, such as autism 
spectrum disorder, attention deficit hyperactivity disorder, 
major depressive disorder). This speaks in favor of the 
fact that impairment of functional connectivity is the most 
prominent neuroimaging marker of schizophrenia.

In this regard, interesting are investigations of modular 
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playotropy — attempts to determine interrelationships 
between the sets of phenotypes and the sets of genes 
specifying them relative to the network architecture of 
the human brain [56, 57]. It has been shown that for 
each region of interest, an almost unique set of SNPs 
and gene transcription profiles correspond to the 
connectivity pattern [58]. The metadata analysis pointed 
to a certain functional isolation of the SNPs clusters. 
There were significant associations of the genes of iron 
transport and storage proteins (connected by magnetic 
susceptibility of the brain subcortical tissue); extracellular 
matrix and epidermal growth factor (connected with 
the white matter microstructure); regulation of the 
midline axon development, signal transmission, and 
plasticity with SNP [59]. The detected results regarding 
gene expression, SNPs, and human behavior may 
help in searching for candidate genes of psychiatric 
diseases, because if the brain regions associated with 
the disease are known, it is likely that single-nucleotide 
polymorphisms in the genes, whose coexpression 
reflects the connectivity of these regions, are involved in 
the pathogenesis of this disease [58].

Besides, investigations of SNPs, gene transcript 
profiles, and metrics of structural and functional 
connectivity in the process of performing behavioral 
tests have shown the significance of associations 
specifically in relation to functional connectivity. This 
points to the fact, that genetic determinacy of some 
behavioral reactions is realized exactly at the level of 
functional connectivity [58]. It was similarly demonstrated 
in a series of other studies that it is in respect to the 
dynamics of functional connectivity that the gene effect 
is so marked [60, 61]. Apart from this, the comparison of 
data shows that despite the differences in the patterns 
of functional connectivity in the studies using EEG and 
fMRI, dynamic changes of such connectivity during 
cognitive tasks (watching video, flashing gratings) 
appear to be consistent among the individuals regardless 
of the method of recording brain activity [62].

When studying neurodegenerative diseases, it has 
been found that allele ε4 of the apolipoprotein gene E 
(APOE), which bears the risks of Alzheimer’s disease 
(whereas allele ε2 possesses protective properties 
[63, 64]), is associated with increased connectivity in 
the hippocampus and cortex [65, 66], although this 
information requires validation [67]. He et al. [68] 
performed differential analysis of gene coexpression 
using a biclustering method and have found that 
38 genes show various patterns of coexpression 
between the DMN regions associated and not with 
Alzheimer’s disease. Functional clusterization showed 
the involvement of signaling pathways ERBB-4 (ErbB-2 
receptor tyrosine kinase 4), ERBB-2 (ErbB-2 receptor 
tyrosine kinase 2), PTK6 (protein tyrosine kinase 6), 
non-receptor tyrosine kinase, long-term potentiation, 
activation of NMDA receptors and related postsynaptic 
changes, neurotransmitter receptors, and postsynaptic 
signaling pathways.

A similar approach was applied in the longitudinal 
study of children, victims of military action [69]. It was 
shown that the cumulative genetic risk, estimated by the 
contribution of five alleles, associated with a high risk of 
development of post-traumatic stress disorder (PTSD), 
of which three SNPs were variants of the oxytocin 
receptor gene, determined the dynamics of DMN 
development with age.

Foo et al. [26] investigated the connection of a wide 
number of metrics from the graphotheoretical approach 
and genetic markers in the context of insomnia and 
functional brain changes related to aging. The authors 
have found low heritability of graph metrics (h2=0.12), 
which conflicted with previous studies [70], however, 
they managed to identified important associations of 
several SNP (rs62158160, rs62158161, rs62158166, 
rs62158168, rs12616641, rs62158169, rs62158170, 
rs199993536, rs6737318, rs62158206, rs7556815, 
rs2863957, rs1823125, rs60873293), located in the 
intergenic region in the vicinity of PAX8 gene (paired box 
gene 8), with connectivity of somatosensory and limbic 
networks. The results have demonstrated that insomnia 
is most significantly related to the decreased connectivity 
of somatomotor network.

A family of PAX genes is known to encode the 
transcription factors necessary for development and 
tissue homeostasis [71]. For example, the PAX8 protein 
is considered a master regulator of cellular processes 
in DNA repair, replication, and metabolism [72]. It 
regulates several genes engaged in the production 
of thyroid hormones [73] needed for the development 
and functioning of the brain (neuron differentiation, 
synaptogenesis, and dendrite proliferation) [74, 75].

In the same study [26], the authors showed 
associations of connectivity strength in the combined 
network, including 7 networks, with SNP (rs145868127, 
rs2680724, rs62165320, rs2661030, rs2661035, 
rs1880544, rs2089478, rs123837764, rs12474078). 
Additionally, to several non-encoding sequences, five 
genes have been detected, which were associated with 
the metrics of global efficiency, specific pathway length, 
and connectivity strength of DMN, dorsal attention 
network, and somatosensory network: SLC25A33 
(solute carrier family 25 member 33), TMEM201 
(transmembrane protein 201), ZEB1 (zinc finger E-box 
binding homeobox 1), SH2B3 (SH2B adaptor protein 3), 
and ATXN2 (ataxin-2).

As to the genetic markers of functional connectivity 
patterns in affective disorders, polymorphism of the 
serotonin transporter gene 5-HTTLPR (serotonin-
transporter-linked promoter region) is the most actively 
studied. Investigations with fMRI [76, 77] have shown 
that this polymorphism is associated with changes in 
functional connectivity between the regions, which 
are responsible for regulation of emotions (amygdala, 
prefrontal cortex, anterior cingulate gyrus, insular 
cortex). S-allele 5-HTTLPR has been found to 
predispose individuals to depression if stressful events 
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occurred in early childhood [78], and also to a number 
of other mental disorders [79, 80]. It was shown in 
EEG investigations that in contrast to L-homozigotes, 
carriers of S-allele have lower density of cortical sources 
distribution and connectivity in the majority of frequency 
ranges in the regions overlapping DMN and regions 
related to emotion regulation [81]. Despite the existence 
of some papers, in which the link between 5-HTTLPR 
and stress was not confirmed [82, 83], it is necessary to 
continue researches, which would consider not only brain 
connectivity (as an intermediate link) but other factors 
as well, for example, intricate interaction of genes of 
serotoninergic system, additional environmental factors, 
and psychological features. Moreover, it has been found 
that 5-HTTLPR polymorphism may be related not to the 
depression as such (in the presence of stressful factors) 
but rather to the adaptive or non-adaptive strategies of 
emotion regulation [84].

The study [85], which covered the majority of 
candidate genes associated with depression and 
schizophrenia, has shown that when graph analysis 
method is used, the gene networks in these diseases 
will have similar properties. It was seen by the number of 
connections for each node (degree value). The authors 
stated that the obtained results may partially explain 
frequent comorbidity of these conditions.

Richiardi et al. [86] estimated non-randomness of 
gene co-expression in functionally connected brain 
regions and defined that a pool of expression patterns, 
in compliance with the principle of belonging to a neural 
network, determines the graph with a higher degree 
of connectivity. At the same time, the idea that the 
coincidence of expression patterns depends on spatial 
neighborhood of the analyzed regions was excluded. 
At the stage of biological validation, the association 
was shown not only with the level of expression but 
with gene polymorphism as well. Functional annotation 
demonstrated the significance of the ion channel 
genes including, for example, GABA5 in determining 
network connectivity, which confirms the significance of 
neuron-specific synaptic processes in the development 
of functional connectivity in the brain.

Summarizing the results of investigations, we can 
conclude that the link between genetic associations and 
functional connectivity of the brain is traced in various 
pathologies. Some current studies are presented in the 
Table.

It is clear that the condition of the intercellular 
matrix, endothelial activity, and other factors 
determining anatomical connectivity and structuring 
of the grey and white matter influence specific neuron 
activity and efficiency of synaptic connections. Age and 

Investigations of genetic associations with functional human brain connectivity in the context of mental  
and neurological disorders and predisposition to them

Sample Genetic associations Method Connectivity specifics Sample size References
Association with schizophrenia

Patients  
with schizophrenia 
and control group

Polymorphism of nrgn gene 
(rs12807809)

Resting-state 
fMRI

Increase of FC between hippocampus  
and inferior temporal gyrus, lingual gyrus, 
and fusiform gyrus in schizophrenia 
Decrease of FC between hippocampus  
and caudate nucleus, thalamus,  
and anterior cingulate gyrus  
in schizophrenia
The lowest FC between hippocampus  
and anterior cingulate gyrus was found  
in TT-homozygotes in schizophrenia 
compared to that in carriers of C-allele 
in schizophrenia and control group

n=99 (control) and 
n=59 (schizophrenia):  
29 carriers of C-allele  
and 30 carriers  
of T-allele 

Zhang et al., 
2019 [51]

Healthy 
participants

Genome-wide association 
study; there were identified 
125 genes whose expression 
was highly significantly 
associated with connectivity,  
and 51 genes  
were associated  
with schizophrenia

Resting-state 
fMRI

51 genes associated with schizophrenia 
turned out to be common for all functional 
networks and connected with action 
potentials

n=800 (330 males,  
470 females); age — 
23.8±2.4 years (18– 
30 years)

Zhang et al., 
2021 [42]

Healthy 
participants

COMT (catechol-O-
methyltransferase) 
polymorphism is associated 
with schizophrenia

fMRI for the task 
on associative 
memory

Connection between medial temporal 
lobe and prefrontal cortex was weaker  
in COMT val-homozygotes relative  
to met-homozygotes

11 participants 
homozygous  
for COMT val-allele, 
and 11 participants 
homozygous  
for COMT met-allele

Dennis et al., 
2010 [55]
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other epigenetic factors make their contribution to the 
formation of connectome variability [88]. Additionally 
to the factors of structural connectivity, the geometry, 
cytoarchitecture, and patterns of gene expression 
determine functional connectivity to the greatest degree 
[89, 90]. However, current approaches to the estimation 
of connectome genetics are a powerful tool enabling 
discrimination of factors, which impact specifically 
structural and functional connectivity.

Conclusion
Data, accumulated by the present time, allow us to 

believe that functionally clustered connectivity genes 

refer to the pool of ion channel regulation, calcium 
homeostasis, neuroplasticity, neurotransmitter release. 
This is an indication of the priority (essentiality) of 
neuron-specific synaptic processes in the establishing 
of functional connectivity in the brain. This information 
may be applied in the field of translation medicine and 
clinical practice, since it gives an idea of potential targets 
of therapeutic action.

This is especially important due to the necessity of 
developing more advanced methods of early diagnosing 
and treatment of mental disorders including affective 
pathologies and neurodegenerative diseases, the 
growing occurrences of which pose a serious threat 
for functioning of an individual and society in general. 

Sample Genetic associations Method Connectivity specifics Sample size References
Neurodegenerative changes

Patients  
with Alzheimer’s 
disease, control 
group (data  
from 16 studies)

There were detected  
38 genes, which  
were different in the 
character of coexpression 
between brain regions 
associated and not 
associated with Alzheimer’s 
disease in the DMN network

Data of resting-
state fMRI  
from Neurosynth 
database

Connectivity of DMN was investigated  
to search for a subset of genes  
with altered character of coexpression

Total number  
of participants  
is not indicated

He et al.,  
2022 [68];  
data of entire  
brain 
transcriptomics 
from the Allen 
Human Brain  
Atlas (AHBA)

Middle-aged 
and elderly 
participants

One significant locus  
was identified near PAX8 
gene (associated with sleep 
duration, differentiation  
and development of neurons, 
oncology, and susceptibility 
to neurodegenerative 
diseases)

Data from 
resting-state 
fMRI

Association with connectivity  
of somatomotor and limbic networks

n=18,445 (9773 
females and 8672 
males); average  
age — 62.47± 
7.47 years (44– 
80 years)

Foo et al.,  
2021 [26];
Genome-wide 
data from UK 
Biobank

Post-traumatic stress disorder
Adolescents — 
victims of military 
action and control 
group 

Polymorphisms of genes 
related to oxytocin: OXTR 
(rs1042778, rs2254298, 
rs53576), CD38 — 
rs3796863, AVPR1A — RS3

Resting-state 
MEG 

Total contribution of 5 polymorphisms  
and symptoms related to stress explained 
25% of differences in DMN connectivity

n=74 (age — 11– 
13 years), 39 of them 
are victims of military 
action, 35 — control 
group

Zeev-Wolf  
et al.,  
2020 [69]

Affective disorders
Healthy 
participants

5-HTTLPR polymorphism 
(associated with depression 
an a number of mental 
disorders)

fMRI during 
perception 
of emotional 
expression 
of faces

Lower connectivity between amygdale  
and anterior cingulate gyrus  
was observed in carriers of S-allele 
than in carriers of L-homozygotes

n=94 (age  
and gender are not 
indicated)

Pezawas et al., 
2005 [87]

Healthy 
participants

5-HTTLPR polymorphism Resting-state 
EEG

Lower density of distribution of cortical 
EEG signal sources and connectivity  
in the majority of frequency ranges  
in the regions overlapping DMN 
and regions related to emotion regulation 
was observed in S-allele homo-  
and heterozygotes in comparison  
with L-allele homozygotes 

n=113 (63%  
are females, average 
age — 25.2±8.9)

Proshina et al., 
2018 [81]

N o t e: FC — functional connectivity, MEG — magnetoencephalography.

End of the Table
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Exploration of close connection of genetic factors with 
brain functioning in psychopathologies provides the 
possibility to obtain objective information, which may be 
used as an option to the standard diagnostic procedures. 
The search for objective markers is of special 
importance in view of a large temporal gap between the 
onset of the disease development and manifestation 
of clinical symptoms. One of the most important tasks of 
the current neurosciences is fixation of early cognitive 
deviations, which may slow down the development of 
neurodegenerative diseases. In the near future, owing 
to the development of personalized medicine, a question 
of the degree of association of connectivity, complexity, 
and other metrics of functional networks with individual 
specific genotype will attract increasing interest. 
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