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The literature reports on microarchitecture and metabolism characteristics of synthetic hydroxyapatite obtained by different 
techniques were analyzed. The direct relation between hydroxyapatite production process and its microarchitecture was stated to exist. 
In turn, hydroxyapatite microarchitecture largely specifies its metabolism characteristics (a number of processes related to calcium and 
phosphorus metabolism). Therefore, with reference to the metabolism of synthetic hydroxyapatite with various microarchitectures, we 
analyzed the relationship of the material under study with the immune system cells.

Particular emphasis was given to the relationship of hydroxyapatite characteristics with a recipient’s immune system due to the 
material microarchitecture. The review assessed the possible participation of cell mitochondria in synthetic hydroxyapatite metabolism. 
There were compared the findings of a recipient’s immune system in vivo and in vitro depending on hydroxyapatite nanoscale morphology.

The review conclusions emphasized the necessity for further investigations of immunologically mediated metabolism of hydroxyapatite 
intended for bone implants, including the development of research methods in vitro for deeper understanding of the material properties. 
There was demonstrated the synthetic hydroxyapatite potential in treating bone defects and specified the significance of in vivo studies 
to develop bone surgery and reconstructive medicine.
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Introduction

Current medical technologies dealing with bone 
tissue regeneration improvement are based on the 
extensive application of both hydroxyapatite-based 
grafts and implants. The variety of the materials used 
reflects a great number of pathological conditions of 

bone tissue. According to the source, grafts are divided 
into autologous (autogenic), allogenic, and xenogeneic. 
In turn, the implants for bone regeneration can be 
conditionally divided by the material origin used for their 
production. The key value for bone implant production is 
synthetic hydroxyapatite made using chemical synthesis. 
However, there are many materials based on processed 
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hydroxyapatite of biogenic origin obtained using various 
processing techniques.

The use of autologous bone grafts is a recognized gold 
standard of bone grafting. In clinical practice autologous 
transplantation has already been usefully employed for a 
century [1, 2]. However, despite the fact that autologous 
material is standard, the number of studies aimed at 
searching for some alternative materials keeps growing. 
It is due to critical drawbacks of the methods used 
to obtain autologous material: firstly, limited volume 
of transplantation material [3, 4]; secondly, possible 
complications on a donor’s site [5, 6]. A general list of 
complications includes infections, hematomas, chronic 
pain, fractures, as well as vessel and nerve damage 
[7]. The volume of the material taken out correlates with 
the complication risk [8] significantly limiting the use 
of autologous bone grafting. Therefore, it is extremely 
important to use alternative transplant materials, among 
them there are allogenic [9–11] and xenogeneic [10, 12]; 
that is why they under extensive study.

Allogenic material is functionally the most approximate 
one to autologous transplant material among those 
mentioned above. Its main advantage is relatively high 
availability [13]. Therefore, it has been widely used for 
long years in clinical practice to reconstruct extensive 
bone injuries. Like autogenous, allogeneic transplant 
material has a high degree of similarity to the native 
bone structure. It has similar mechanical properties, as 
well as osteoinductive and osteoconductive properties, 
and to some extent it is biocompatible. The specified 
properties are limited due to the necessity for the 
transplant material decellularization [11]. According to 
some authors, the main problem of the method is the 
absence of integrated protocols and a potential risk of 
transmitting infectious diseases [14].

The category of xenogeneic bone grafts has a number 
of similarities to allogenic materials. For instance, there 
are evidences confirming high osteoconductive properties 
of xenogeneic bovine bone material [15]. However, 
the independent use of xenogeneic graft, despite an 
uneventful postoperative period in certain cases [16], 
shows low quality of clinical results [17, 18]. The main 
negative results of xenotransplantation are fibrous graft 
encapsulation [19], vicious union, and pain syndrome 
[20]. Moreover, due to extremely high duration of 
xenograft integration (57 weeks) compared to an allograft 
(16 weeks), many experts cast doubt on the possibility of 
independent usage of xenogeneic grafts [17].

Thus, it is still urgent to solve the problem 
of standardization and high risk of transmitting 
infectious agents when transplanting allogenic [21, 
22] or xenogeneic [23] bone materials. High risk of an 
increased immune response in allogenic and xenogeneic 
bone grafting is needed to be taken into consideration 
[24, 25]. The presented problems in using allogenic and 
xenogeneic grafts cause the necessity for developing 
safer, more available, and comparatively efficient 
alternative techniques. 

Therefore, it is reasonable to use synthetic 
hydroxyapatite as a base for grafts, which enable 
them to take on the role of functional alternatives to 
bone grafts. It is proved by the experience of clinical 
use of hydroxyapatite [26–29]. Its popularity can be 
explained by the fact that hydroxyapatite is a native 
form of bone tissue calcium, it occupying 70–90% of 
its matrix volume. In bone tissue, hydroxyapatite is 
in the form of small-sized crystals and characterized 
by a stoichiometric formula: Ca10(PO4)6(OH)2 [30]. 
Special attention is drawn by a composite form of using 
synthetic hydroxyapatite, since the native bone is also a 
composite structure [31, 32].

Hydroxyapatite was shown to contribute to bone 
tissue regeneration providing favorable osteoimmune 
microenvironment [33]. However, even if the materials 
most suitable for obtaining bone grafts are used, a 
preliminary detailed analysis of an immune response 
is required. Within the given context, a number of 
unique immunological parameters of hydroxyapatite-
based materials can acquire great importance [34, 
35]. Modern literature data [33, 36, 37] demonstrate 
an immunomodulating effect of hydroxyapatite-based 
materials. So, there was studied a macrophage-
mediated regenerative effect of hydroxyapatite related 
to the graft material metabolism [33]. Such information 
enables to manipulate these parameters adjusting 
structural and textural material characteristics, as 
well as including various functional components. The 
relationship of synthetic hydroxyapatite nanostructural 
parameters and its immunomodulating properties is 
still an open issue [33]. There are left unclarified the 
hydroxyapatite metabolism parameters on a cell level; 
and the role of monocytes/macrophages in particular 
[33, 38].

Sourcing methodology

The literature for the present review was searched 
in MEDLINE (PubMed) and Google Scholar by key 
words and their combinations: hydroxyapatite bone 
grafts, hydroxyapatite nanoparticles, nanostructured 
hydroxyapatite, bone grafts for biomedical applications, 
hydroxyapatite synthesis for bone grafts, hydroxyapatite 
for biomedical applications, hydroxyapatite production 
for bone grafting, biogenic hydroxyapatite, dry method 
hydroxyapatite production, dry method of hydroxyapatite 
production, chemical method of hydroxyapatite production, 
osteoclast response to synthetic hydroxyapatite, response 
to synthetic hydroxyapatite, properties of nanostructured 
hydroxyapatite, osteogenic potential of hydroxyapatite, 
osteoconductive potential of hydroxyapatite.

Available scientific data was gained till November 
28, 2023. The articles were selected by two coauthors, 
independently from one another using manual search. 
All differences were smoothed by means of discussions 
by an authoring team, as well as by consulting the third 
expert. A total of 133 scientific articles were selected.
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Figure 1. Algorithm of solid-phase method of hydroxyapatite production:
1 — source of calcium raw material (calcium hydroxide); 2 — source of phosphates (ammonium hydrophosphate); 3 — 
optional introduction of salts; 4 — prepared calcium phosphate powder; 5 — intensive mechanical grinding (vibrating ball 
mill); 6 — high-temperature treatment of the mixture; 7 — transferring material in the form of primary raw material. The 
illustration was created using the online tool BioRender (https://www.biorender.com/)

Synthetic hydroxyapatite production processes 
and synthetic hydroxyapatite nanostructure 
characteristics 

There are two main categories of preparation 
techniques: solid-phase methods and those using 
solvents [39].

Solid-phase methods are characterized by using 
a mechanical action and relatively high temperatures 
(Figure 1).

The methods require no solvents [40, 41]. A solid-
phase technology has low sensitivity to production 
conditions [42, 43] and generates a product with high 
crystallization [39, 44]. However, such hydroxyapatite 
often includes intermediate phases [45] and exhibits 
low biomimetic properties [46]. On the other hand, such 
material production is easily scaled using the optimal 
temperature of 1050°C. So, high temperatures for 
hydroxyapatite production slightly decrease its porosity 
[45], it being the significant restriction of its usage as a 
material for bone grafting.

Chemical deposition methods are characterized by 
using solvents — the sources of calcium and phosphates 
[39] — in the presence of additives [47–50] in acid 
or basic media (Figure 2). The range of production 
conditions of these methods is extremely diverse: there 
is a great variability of pH values (3–12) [51, 52] and 
temperatures (25–90°C) [39, 53].

Precipitation enables to obtain hydroxyapatite 
particles with native morphology (needle-like) [54] and 
makes it possible to manipulate it [40]. Precipitation 
provides the preparation of the material with desired ion-

substitution by magnesium [47], strontium, lithium [55], 
manganese [48], aluminium [49], zinc [55, 56], selenium 
[50], and other metals [57, 58].

Chemical deposition is used to obtain a composite 
material [59] forming the coating for polymer [60–62], 
metal [63, 64], and combined scaffolds [65, 66]. Through 
this process, there can be obtained composite porous 
micelles [67], nanoparticles [68], nanotubes [69], 
and nanorods [70]. Hydroxyapatite obtained through 
chemical deposition has low crystallinity [40]. Despite 
chemical deposition requires no high temperatures, the 
method needs the strict control of synthesis conditions. 
On the one hand, it decreases hydroxyapatite production 
scaling by the method, although, on the other hand, 
it enables the fine adjustment of the hydroxyapatite 
morphology and nanoparticle size [53]. It is likely to 
be an important advantage when using the method in 
research practice. 

An electrochemical method is based on aqueous 
solutions [71]. The technique enables to form a uniform 
coating at moderate temperatures, providing strong 
integration of hydroxyapatite into porous agents [71, 
72]. A striking example is the method of impulse 
electrodeposition, which decreases the release of 
gaseous hydrogen, improving hydroxyapatite integration 
[71]. Similarly to chemical deposition, electrodeposition is 
used to produce composite structures of hydroxyapatite 
with the most diverse morphology and composition 
[73]. Such structures can include different alloys [74–
76], including aluminium ones [77], and polymer bases 
[78]. The abovementioned electric deposition also has 
morphological variety: hydroxyapatite nanotubes [79], 
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Figure 2. Algorithm for obtaining hydroxyapatite by chemical deposition: 
1 — a syringe pump with Ca2+ reagent (calcium nitrate Ca(NO3)2); 2 — pH controller (ammonium solution); 3 — pH meter; 
4 — phosphate anions (diammonium phosphate (NH4)2HPO4); 5 — stirring and temperature control; 6 — precipitation of 
hydroxyapatite particles; 7 — transfer material in the form of primary raw material. The illustration was created using the 
BioRender online tool (https://www.biorender.com/)
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nanoparticles [80], and other disperse hydroxyapatite 
forms [81, 82, 57].

Emulsion method belonging to category 2 methods 

is one of the most effective for obtaining nanostructural 
hydroxyapatite powder (Figure 3). Powder particles 
form in a disperse medium of two immiscible solvents 

Figure 3. Algorithm for hydroxyapatite production using emulsion method:
1 — hydroxyapatite particles; 2 — oil phase; 3 — aqueous phase; 4 — implantation material; A — oil encapsulated in an 
aqueous phase containing particles; B — oil encapsulates an aqueous phase with a hydroxyapatite particle; C — emulsion 
system, where an aqueous phase contains the oil with an encapsulated aqueous medium containing hydroxyapatite 
particle. The illustration was created using the BioRender online tool (https://www.biorender.com/)
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stabilized by surface-active agents (SAA). The way the 
emulsion is produced is determined by SAA nature and 
concentration [83]. An emulsion provides a favorable 
medium to regulate particle growth. In turn, hydrophobic 
SAA are easily removed by ignition [84, 85].

The emulsion method advantage is the strict control 
of morphological parameters of nanoparticles, and due 
to this the technique is often used to obtain porous 
materials. The sources of calcium and phosphate can 
be calcium nitrate and phosphoric acid. As SAA, there 
can be used dioctyl sodium sulfosuccinate, dodecyl 
phosphate, polyoxyethylene, non-polyphenol ether, 
polyoxyethylene ether, cetyl trimethyl ammonium 
bromide, and sodium dodecyl sulfate. In addition to SAA 
characteristics, end parameters of hydroxyapatite can 
be determined by temperature, water and organic phase 
relationship, pH and precursors concentration [39].

Sol-gel method is a relatively popular method to 
obtain hydroxyapatite (Figure 4). As precursors, there 
can be used calcium chloride and various organic 
phosphites [86]. It is convenient for obtaining film 
coatings [87, 88] and aerogel structures [39]. The 
technique presupposes precursors hydrolysis with 
the formation of micelles associated with templates in 
aqueous or organic media. It provides high chemical 

homogeneity of hydroxyapatite [89], appropriate 
stoichiometry, and minimal size clustering. There were 
additionally indicated high rate of surface-specific area 
and available mesoporous volume of hydroxyapatite 
obtained by the method [90]. In vitro studies confirm 
good biodegradation characteristics of the material 
obtained by this method [40]. However, it has a limited 
scaling potential due to low availability of precursors. 
Moreover, insufficient manufacturing control can promote 
the formation of secondary phases in the form of CaO, 
Ca2P2O7, Ca3(PO4)2, and CaCO3 [39].

Each of the methods presented has its advantages; 
therefore, the most logical step towards improving 
synthetic hydroxyapatite quality can be the combination 
of the above-described methods of its production. So, an 
emulsion method product, for example, undergoes high-
temperature treatment [84], which is often a final stage 
of combined technologies, and enhances the material 
crystallinity [85]. There are two main variants of high-
temperature treatment as separate methods. They are 
pyrolytic spraying and a sputter coating technique. The 
first one consists of spraying a solution of calcium and 
phosphorus salts in a high-temperature furnace followed 
by water evaporation and the formation of hydroxyapatite 
crystals. The second technique presupposes high-

Figure 4. Sol-gel method operation scheme:
1 — phosphate-containing reagent (phosphorus pentoxide); 2 — calcium-containing reagent (calcium nitrate); 3 — solvent 
(water or ethanol), control of sol formation reaction; 4 — sol condition of the reaction mixture (4а — deposition with the 
material formed as powder; 4b — formation of coatings; 4c — formation of ceramic fibers); 5 — the reaction mixture transfer 
from sol to gel; 6 — control of coagulation reaction parameters; 7 — coagulation; 8 — direct transfer into gel-formation 
condition; 9 — control over gel-formation reaction conditions; 10 — gel; 11 — evaporation and extraction by a dissolvent; 
12 — aerogel formation; 13 — dense ceramics. The illustration was created using the BioRender online tool (https://www.
biorender.com/)
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temperature coating of the target by hydroxyapatite. In 
both cases the morphology and size of the particles can 
be regulated, since the parameters directly depend on 
the characteristics of sprayed and evaporated drops [40].

Biogenic sources of hydroxyapatite

Let us consider the most common techniques used 
to produce hydroxyapatite from biogenic sources, their 
popular raw material is biological waste: great cattle 
bones [91, 92], egg shell [93, 94], sea organisms 
[95–98], and plants. The latter can be used to extract 
hydroxyapatite [99] or as a solvent [100, 101]. In 
addition, they are used as calcium [102] and phosphate 
[103, 104] sources. Literature reports demonstrate the 
applicability of nanostructural hydroxyapatite of plant 
origin [105] and mycogenous hydroxyapatite [106].

The key requirement for this raw material type is the 
possibility to remove organic residues, it being achieved 

through heat treatment [93], subcritical water treatment 
[107, 108], alkaline thermal hydrolysis [108], and 
fermentation techniques [109].

Natural hydroxyapatite has different substitution 
degrees of such elements as Na+, Zn2+, Mg2+, K+, 
Si2+, Ba2+, F–, and CO3

2– [110]. It explains the multiple 
roles of native hydroxyapatite of bone tissue. There 
was described high biomimeticity of the obtained 
hydroxyapatite and the mineral phase of human 
bone [93]. It was confirmed by the data indicating 
the similarity of leading morphological and micro-
architectural parameters of hydroxyapatite treated at 
high temperatures [111]. So, the specific surface and 
morphology of synthesized hydroxyapatite particles 
are in the range of the values characteristic for native 
bone tissue [112–115]. It should be noted that biogenic 
hydroxyapatite can serve as raw material source for 
many production methods of synthetic hydroxyapatite 
(see the Table [92, 93, 95, 96, 98, 115–123]).

Application of different biogenic raw material types to obtain hydroxyapatite

Source
of raw materials Method of extraction Description of an end product 

(hydroxyapatite)
In vitro and in vivo

study findings References

Animal bone waste Ignition Hexagonal nanoparticles, 
300–500 nm in size

Good viability and proliferation of cells [92, 115]

Treatment using a ball mill Nanoparticles, under 500 nm  
in size

Osteogenic differentiation of dental 
stem cells

[116]

M. furnieri waste NaOH and H2O2 treatment, 
t=800°C

Particles with pores ~8 µm in size Tissue growing in a graft [95, 117]

H. molitrix bone waste NaOH and acetone treatment Powder, average crystallite size 
~58.3 nm

MG63 cell viability is 91% [118]

Ignition, t=900°C Powder, average crystallite size 
~64.3 nm

MG63 cell viability is 86%

Tilapia bone waste Ignition, t=600–800°C Porous grains with high Mg2+ 

substitution degree 
High biocompatibility degree [114]

E. chlorostigma bone 
waste

Alkaline hydrolysis  
and ignition, t=600°C

Nanoparticles, 29.5 and 82.12 nm 
in size, respectively 

High biocompatibility degree of L929 
cells. High remineralization potential

[119]

L. catla 
and N. japonicus scales

Ignition, t=800°C  
and treatment using a ball 
mill

Porous nanoparticles, 30–60 nm 
in size, and 10-nm crystallites

In combination with polycaprolactone, 
there was proliferation and perfect 
adhesion indices

[98]

L. lentjan scale Hydrothermal treatment, 
t=280°C

Rods 50–100 nm long, 8–12 nm 
in diameter, and spheroids 15– 
50 nm in diameter

Biocompatibility and high osteogenic 
potential of human mesenchymal stem 
cells

[120]

Plancton Leaching of solid particles Porous nanohydroxyapatite Adhesion, proliferation, and viability [121]
A. glabrata shells Ignition, t=900°C 

and deposition
Nanoscale rods 13.3–15.2 nm Inhibits development of pathogenic 

bacteria and fungi
[96]

Sepia cuttlefish skeleton Heat treatment NH4H2PO4, 
t=200°C

Biomimetic microspheres 1–2 µm MG63 proliferation. High alkaline 
phosphatase activity and osteocalcin 
expression

[122]

A. fulica shells Sintering in the presence  
of (NH4)2HPO4 
In succession: t=150°C 
(night), 80°C (up to complete 
drying), 750°C (1 h)

Nanoparticles, 87.7–88.9 nm  
in size

Antibacterial activity [123]
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The presence of a great variety of alternative 
methods for obtaining synthetic hydroxyapatite using 
the most diverse precursors provides great opportunities 
to produce bone grafts with various nanostructural 
parameters. It is due to the described above dependence 
of hydroxyapatite nanoarchitecture on its production 
methods. The nanostructure variety is an important 
condition for choosing the research and therapeutic 
strategies for bone graft application.

Metabolism and interaction characteristics  
with the recipient’s immune system

Most grafts used for bone tissue regeneration are 
temporary structures, which provide structural support, 
contribute to bone repair, and direct bone growth. Semi-
synthetic and synthetic materials are available and can 
be modified (for instance, there can be confirmed the 
positive dynamics of new bone formation based on 
hydroxyapatite scaffold [124].

Among the most common synthetic bone expletive 
substances, there is a group of calcium-phosphate 
ceramics, including hydroxyapatite, β-tricalcium 
phosphate, and α-tricalcium phosphate, calcium 
sulphate, as well as bioactive glass and polymers 
[125]. Hydroxyapatite has a number of characteristics 
compared to other synthetic bone substitutes. Compared 
to β-tricalcium phosphate, carbonate-substituted 
hydroxyapatite [126, 127] exhibits increased solubility 
under the conditions imitating lacunas of Howship 
(resorption fossae) [128]. The latter structure is the result 
of osteoclastic activity and plays an important role in 
bone remodeling [129]. β-tricalcium phosphate resorption 
is maximum in physiologically normal conditions [128]. 
Even higher resorption in physiological conditions was 
found for α-tricalcium phosphate [130]. In addition, it 
should be noted that hydroxyapatite substituted by 
magnesium exhibits lower resorption in bone defects 
compared to hemihydrate of calcium sulphate [131]. 
In its turn, calcium sulphate demonstrates incomplete 
osteogenic response compared to β-tricalcium 
phosphate/apatite [132, 133].

When comparing hydroxyapatite and bioactive 
glass, there is a striking osteoinductive response of 
the latter [125]. It is due to an amorphous layer formed 
on the glass surface providing the conditions for the 
concentration of structural proteins and growth factors 

[134]. A comparative analysis of hydroxyapatite, 
bioactive glass, and composites containing both 
materials showed the increase in osteoconductive 
potential when hydroxyapatite was added [135]. Apart 
from that, the grafts based on composite materials made 
of hydroxyapatite and bioactive glass exhibit higher 
mechanical stability after implantation compared to a 
pure bioglass material [135, 136].

The comparison of hydroxyapatite grafting and 
bioactive glass grafting demonstrates the greater area 
of neoformed bone and the greater number of TRAP-
positive (TRAP — tartrate-resistant acid phosphatase) 
cells when using hydroxyapatite [137]. TRAP-positive 
cells are mostly presented by osteoclasts and 
macrophages [138, 139].

The distinctive feature of hydroxyapatite behavior 
under bone remodeling against the background 
described in the works [137, 139] can be a particular 
relation of the material with osteoclastic activity.

As for polymer synthetic bone substitutes, there is 
a similar tendency for osteogenic potential increase 
under conditions of including hydroxyapatite into their 
composition [140]. When there is used the polyurethane 
composite with 40% hydroxyapatite added, the 
capacity for in vitro biomineralization and osteogenic 
differentiation increases. Similarly, in vivo studies 
indicated the considerable volume of vascularized 
bone tissue [141]. There is the same tendency when 
hydroxyapatite is included in polyethylene glycol 
diacrylate composition: the improved mechanical 
properties and biocompatibility are exhibited [142, 143].

The data presented suggest the interaction of 
hydroxyapatite with TRAP-positive cells [137, 144–
146], in particular, with osteoclasts and their immune 
precursors [138, 139]. The relationship between 
hydroxyapatite and a marked acute immune response in 
recipients is confirmed by aseptic destruction and bone 
tissue osteolysis in response to the material implantation. 
The response directly depends on the presence of 
hydroxyapatite particles, under 53 µm in size, decreasing 
the viability of osteoblasts and osteoclasts [147]. The 
mentioned response to small-sized hydroxyapatite is 
characteristic for different cells, including tumor ones; 
hydroxyapatite particles inhibit their proliferation due to 
protein synthesis inhibition, blocking the accessibility 
of ribosomes for mRNA [148]. In addition, it should be 
noted that nanosized hydroxyapatite initiates selective 

Source
of raw materials Method of extraction Description of an end product 

(hydroxyapatite)
In vitro and in vivo

study findings References 

Egg shell H3PO4 heat treatment 
In succession: t=80°C  
(night), 150°C (24 h),  
80°С (24 h)

Particles 21.0–40.8 nm containing 
Mg and Sr

High cell adhesion of MG63 cells [93]

End of the Table
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apoptosis [36] and blocks melanoma growth [149]. It is 
foremost related to the disturbed cell homeostasis of 
calcium and the activation of endogenic mitochondrial 
stimuli of apoptosis [81] that seems intriguingly in the 
scope of hypothesis of mitochondrial mineralization of 
bone tissue [38]. Moreover, hydroxyapatite enables to 
initiate monocytes flattening and the differentiation of 
macrophages into osteoclast-associated phenotype. 
Hydroxyapatite effect stimulates the expression of a 
nuclear factor kappa B ligand and the podosome belt 
formation in monocytes/macrophages, the activity of 
osteoclasts being modulated [150, 151].

It should be noted that the hydroxyapatite treated 
using the method of solution and deposition compared 
to untreated hydroxyapatite promotes TRAP-positive 
staining area growth. The index is associated with the 
osteoclastic activity. The differences under observation 
are explained by the presence of the nanoscale 
hydroxyapatite in untreated material, whereas untreated 
material exhibits coarse-grain structure [152]. It is in good 
agreement with the fact that plate-like nanostructure of 
hydroxyapatite is associated with active cell proliferation 
at early co-incubation stages. On the contrary, for 
hydroxyapatite with needle-like nanostructure, high cell 
proliferation is found only at late experiment stages. 
Plate-like hydroxyapatite microstructure is also related to 
the greater number of flattened macrophages [153].

There was procured valid evidence in favor of 
the effect hydroxyapatite particle morphology has 
on cytokine synthesis by mouse dendritic cells. The 
highest IL-1β (interleukin 1β) secretion was found 
in the response to needle-like hydroxyapatite. In 
contrast, there was found no capability to enhance IL-
1β synthesis for spherical particles, ~100 µm in size. 
It was expected that in intraperitoneal administration, 
needle-like hydroxyapatite particles cause the stronger 
inflammatory response compared to their spherical 
analogs. In mouse peritoneal exudate cells stimulated by 
needle-like particles, ~5 µm in size, higher TNF-α (tumor 
necrosis factor alpha) levels were found in response to 
re-stimulation. All exudate samples, other than those 
stimulated by spherical particles, ~100 µm in size, 
showed decreased IL-10 production. In combination 
with the dynamics of infiltration by mast cells and 
macrophages, it indicates the less inflammatory 
response to large spherical particles compared to 
needle-like ones [37]. Moreover, the material particle 
morphology plays a key role in forming osteoconductive 
properties owing to the material resorption rate regulated 
by TRAP-positive osteoclast-like cells [154].

Comparatively, later studies also have confirmed the 
particular importance of the nanoscale morphology of 
the hydroxyapatite-based graft material. For instance, 
hydroxyapatite with grooved structure compared to the 
control hydroxyapatite promotes better macrophage 
attachment and decreases the production of anti-
inflammatory cytokines of TNF-α, IL-1β, and IL-6. The 
phenomenon is due to the decreased accumulation of 

reactive oxygen species (ROS) owing to the modulation 
of mitochondrial functions. However, no effect on the 
character and dynamics of macrophage polarization 
was revealed [155], although the later studies have 
reported on such a possibility [35]. On the other hand, 
in case of nanostructural hydroxyapatite action on 
macrophages, there is an increase in the synthesis 
of TNF-α, IL-6, adenosine triphosphate, nicotinamide 
adenine dinucleotide, and ROS [156]. At the same time, 
CD8-positive T-cells demonstrate increased expression 
of IFN-γ and CD107α [157]. In contrast, micro-grooved 
structure decreases IL-6 expression owing to inhibiting 
miR-214, and thus contributing to the survival of 
mesenchymal bone marrow stem cells [155]. The rod-like 
hydroxyapatite ability to have an effect on mitochondrial 
functionality is proved by its antitumor action mechanism. 
For example, in nano-rod hydroxyapatite internalization, 
mitochondrial ROS and cathepsin B are released [157]. 
The hydroxyapatite with the mentioned morphology 
demonstrates marked immunomodulating [33, 36] and 
proapoptotic [36] properties.

Next literature example [148] demonstrates the 
difference in the properties of hydroxyapatite with 
different morphology under in vivo and in vitro 
conditions. In vivo studies showed a comparable 
osteogenic potential for both nanostructural and 
submicron hydroxyapatite. Moreover, nanostructural 
hydroxyapatite exhibits greater osteogenic potential. 
Concurrently, the authors emphasized the relationship 
of osteogenesis and osteoclastogenesis. However, in in 
vitro experiments nanostructural hydroxyapatite has an 
inhibiting effect concerning the early differentiation and 
survival of osteoclasts. It decreases the expression of 
specific markers of osteoclastogenesis, as well as TRAP 
activity, including ROS-generating activity. Therefore, 
it is noteworthy that there are reports on ribosomal 
and mitochondrial mechanisms of inhibiting cell activity 
by hydroxyapatite [36, 148]. Meanwhile, submicron 
hydroxyapatite in in vitro experiments is able to have a 
stimulating effect in relation to osteoclast differentiation 
and activity [133].

To conclude, it is important to note Ca2+ content 
analysis indicates decreased osteoclastogenesis at early 
incubation stages of RAW 264.7 cells with nanostructural 
hydroxyapatite. However, on day 14 the researchers 
observed the gradual increase and sustaining this 
osteoclastogenesis characteristic. However, in a 
similar experiment for submicron hydroxyapatite, on 
day 14 there was the registered steep downfall of this 
osteoclastogenesis characteristic that can be due to 
osteoclastic apoptosis.

There are some studies, which have shown the 
activating properties of nanostructural hydroxyapatite 
regarding osteoclasts [152]. The observed contradiction 
can be due to the differences in infiltration parameters 
of immune cells in in vivo and in vitro experiments 
(e.g., the infiltration dynamics of macrophages and 
mast cells in nanostructural hydroxyapatite grafting 
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[37]). It is not unlikely that the observed phenomenon 
has ROS-dependent mitochondrial origin and is 
associated with apoptosis. The implication is that the 
nature of the phenomenon under study is complex 
since the effect of differences in the infiltration stability 
parameters of immune cells is not exclusive of ROS-
dependent mitochondrial mechanism of osteoclastic 
apoptosis. Thus, the further advance in the phenomenon 
comprehension requires integrated studies including the 
assessment of such molecular mechanisms as ROS-
dependent mitochondrial apoptotic cascades.

Conclusion

According to the data presented, synthetic 
hydroxyapatite as a bone graft material exhibits high 
osteogenic potential and is capable of stimulating 
osteoclastic activity. The comparative analysis 
showed the use of hydroxyapatite as a component of 
composite materials to enhance mechanical stability and 
osteoconductive properties of grafts.

There is the hypothesis describing the bone tissue 
mineralization as the energy-dependent movement of 
calcium cations and phosphate anions of blood serum 
into osteoblastic mitochondria followed by the deposition 
of amorphous microbatches of calcium phosphate. The 
hypothesis is successfully consistent with the literature 
data confirming a significant role of mitochondria in the 
metabolism of both synthetic and native hydroxyapatite. 
On the other hand, synthetic hydroxyapatite and native 
hydroxyapatite have a positive effect on mitochondrial 
ROS-dependent functions. However, the character 
of such an effect directly depends on hydroxyapatite 
microarchitecture. The represented facts enable to 
distinguish the main direction of future research. For 
instance, it is necessary to reveal certain metabolic 
mechanisms of synthetic hydroxyapatite of bone grafts 
by determining the role of mitochondrial apparatus of 
cells.

The represented literature data make rather 
complete picture of differences between in vivo and 
in vitro study findings of synthetic hydroxyapatite 
with different nanoscale morphology. Primarily, they 
enable to conclude that the adequate assessment 
of hydroxyapatite as an implantation material with 
nanoscale morphology, as for now, is possible only if 
there is relatively constant and long-time infiltration of 
immune cells. These conditions to the full extent can be 
achieved in in vivo studies. However, we are aware of 
the need for checking the declaration by further target 
research.

In addition, among the key characteristics of 
hydroxyapatite as a material for bone grafts, there can 
be specified its specific character of interacting with 
monocytes/monophages, osteoclasts, and Т-cells of the 
recipient’s body. Moreover, this characteristic can be 
directly regulated by the nanoscale morphology of the 
material providing the preservation of its macroscopic 

structure. In this context, particular interest can be 
provoked by the ability of nanostructural hydroxyapatite 
to have an effect on ribosomes and mitochondria of many 
cells including tumor cells. Combined with satisfactory 
mechanical properties, high scaling potential, and the 
production process unification, the material can be used 
to treat major bone defects. It is worth noting separately 
the defects resulting from tumor removal, that are due 
to an antitumor effect of nanostructural hydroxyapatite. 
However, the issue also has to be elaborated using 
target studies.
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