Today: Dec 21, 2024
RU / EN
Last update: Oct 30, 2024
The Relationship of Synthesis Intensity, Accumulation and Secretion of Natriuretic Peptide of Atrial Myocytes with Cardiac Rhythm Regulation in Rats in Early Postperfusion Period

The Relationship of Synthesis Intensity, Accumulation and Secretion of Natriuretic Peptide of Atrial Myocytes with Cardiac Rhythm Regulation in Rats in Early Postperfusion Period

Bugrova М.L., Yakovleva Е.I., Abrosimov D.А.
Key words: atrial natriuretic peptide (ANP), cardiac rhythm regulation, cardiac rhythm variability, early postperfusion period.
2012, issue 3, page 26.

Full text

pdf
0
1579

The aim of the investigation is to assess the relationship of the intensity of synthesis processes, accumulation and secretion of atrial natriuretic peptide (ANP) of atrial myocytes with cardiac rhythm regulation in rats in early postperfusion period.

Materials and Methods. The experiments were carried out on 25 white nonlinear male rats of 200–250 g. Total ischemia (10 min) was simulated by the compression of cardiovascular bunch according to V.G. Korpachev technique. The cardiac regulation level in post-perfusion period was determined by the cardiac rhythm variability indices. The intensity of synthesis processes, accumulation and secretion of ANP was estimated using morphometric analysis of immunoreactive labelled granules of atrial myocytes.

Conclusion. Short-term increase of arterial pressure and the activation of sympathoadrenal, pituitary-adrenal and rennin-angiotensin systems have no effect on ANP synthesis and secretion in right atrial myocytes in the first moments of postperfusion period. On the 60th minute of cardiac functioning on intracardial level, there was found high intensity of synthesis processes, accumulation and secretion of ANP in atrial myocytes due to stimulating effect of hypoxic and ischemic factors in this period.

  1. de Bold A.J. Thirty years of research on atrial natriuretic factor: historical background and emerging concepts. Can J Pharmacol 2011; 89: 527–531.
  2. Martynova M.G., Nakatseva E.V., Emel’yanova M.I. et al. Tsitologiya — Cytology 2008; 50(3): 237–242.
  3. Mifune H., Suzuki S., Noda Y. et al. Fine structure of atrial natriuretic peptide (ANP) — granules in the atrial cardiocytes in the pig, cattle and horse. J Vet Med Sci 1991; 53: 561–568.
  4. Rakhcheeva M.V., Bugrova M.L. Tsitologiya — Cytology 2010; 8: 629–633.
  5. Buccelletti F., Bocci M.G., Gilardi E. et al. Linear and non- linear heart rate variability indexes in clinical practice. Computational and Mathematical Methods in Medicine 2012; Article ID 219080, http://dx.doi.org/10.1155/2012/219080.
  6. Levi M.N., Martin P.Yu. Neyrogumoral’naya regulyatsiya raboty serdtsa. V kn.: Fiziologiya i patofiziologiya serdtsa [Neurohumoral re-gulation of cardiac work. In: Cardiac physiology and pathophysiology]. Pod red. Sperelakisa N. [Sperelakis N. (editor)]. Moscow: Meditsina; 1988, p. 64–90.
  7. Bugrova M.L. Osobennosti regulyatsii serdechnogo ritma v postreperfuzionnom periode. Dis. … kand. biol. nauk [The peculiarities of cardiac rhythm regulation in postperfusion period. Abstract of Dissertation for the degree of Candidate of Biological Science]. Nizhny Novgorod; 2005.
  8. Korpachev V.G., Lysenkov S.P., Tell’ L.Z. Patologicheskaya fiziologiya i eksperimental’naya terapiya — Pathological Physiology and Experimental Therapy 1982; 3: 78–80.
  9. Gavrilushkin A.P., Kiselev S.V., Medvedev A.P. et al. Geometricheskiy analiz nelineynykh khaoticheskikh kolebaniy v otsenke variabel’nosti ritma serdtsa [Geometric analysis of nonlinear chaotic oscillations in the assessment of cardiac rhythm variability]. Nizhny Novgorod; 2001.
  10. Mikroskopicheskaya tekhnika [Microscopic equipment]. Pod red. Sarkisova D.S., Perova Yu.L. [Sarkisova D.S., Perova Yu.L. (editors)]. Moscow: Meditsina; 1996; 544 p.
  11. Negovskiy V.A., Gurvich A.M., Zolotokrylina E.S. Postreanimatsionnaya bolezn’ [Postresuscitation disease]. Moscow: Meditsina; 1987; 480 p.
  12. Burtsev S.P., Ivanov A.I., Ivanova T.I., Koloskov Yu.B. Patologicheskaya fiziologiya i eksperimental’naya terapiya — Pathological Physiology and Experimental Therapy 1991; 1: 13–15.
  13. Kuhn M. Endothelial actions of atrial and B-type natriuretic peptides. Br J Pharmacol 2012 Jan 5, http://dx.doi.org/10.1111/j.1476-5381.2012.01827.x.
  14. Mukhina I.V., Kulikov R.S., Yakovleva E.I., Andreeva N.N., Prodanets N.N., Snopova L.B., Bugrova M.L. Obshchaya reanimatolo-giya — General Resuscitation 2007; 2: 8–13.
  15. Khitrov N.K. Bull Eksp Biol Med — Bulletin of Experimental Biology and Medicine 1998; 6: 8–14.
  16. Sarkisov D.S. Strukturnye osnovy adaptatsii i kompensatsii narushennykh funktsiy [Structural elements of adaptation and compensation of impaired functions]. Moscow: Meditsina; 1987; 448 p.
  17. Fujii Y., Ishino K., Tomii T. et al. Atrionatriuretic peptide improves left ventricular function after myocardial global ischemia-reperfusion in hypoxic hearts. Artif Organs 2011 Nov 1, http://dx.doi.org/10.1111/j.1525-1594.2011.01358.x.
  18. Arjamaa O., Nikinmaa M. Hypoxia regulates the natriuretic peptide system. Int J Physiol Pathophysiol Pharmacol 2011; 3(3): 191–201.
Bugrova М.L., Yakovleva Е.I., Abrosimov D.А. The Relationship of Synthesis Intensity, Accumulation and Secretion of Natriuretic Peptide of Atrial Myocytes with Cardiac Rhythm Regulation in Rats in Early Postperfusion Period. Sovremennye tehnologii v medicine 2012; (3): 26


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank