Today: Dec 21, 2024
RU / EN
Last update: Oct 30, 2024
The Principles of Protective Effects Formation Using Different Hypoxic Preconditioning Modes

The Principles of Protective Effects Formation Using Different Hypoxic Preconditioning Modes

Murach E.I., Erlykina E.I.
Key words: free radical oxidation; hypoxia; hypoxic preconditioning.
2013, volume 5, issue 1, page 21.

Full text

pdf
0
1526

The aim of the investigation was to study molecular mechanisms of adaptive reactions formation using short- and long-term hypoxic preconditioning modes.

Materials and Methods. We carried out experiments on white outbred male rats. The animals underwent hypoxic preconditioning by 4- and 28-time hypobaric training within 60 min a day in altitude chamber at 310 mm Hg. Hypoxia tolerance test was performed by simulating severe hypobaric hypoxia in preconditioned animals exposed to atmosphere air rarefied to 143 mm Hg, with 30-minute exposure. We determined the intensity of free radical oxidation processes, catalytic activity of lactate dehydrogenase, neuronal enolase, as well as glucose concentration in brain tissue and blood.

Results. The comparison of biochemical measurements in animals in 4- and 28-time trainings and in intact group showed no statistically significant changes in brain tissue and blood. Hypoxia tolerance test in both exercise modes revealed the reduction of glucose concentration, total activity of lactate dehydrogenase, and free radical oxidation processes in brain and blood of animals, though in varying degrees. The neuronal enolase level in blood serum of the exercised animals was within normal range.

Conclusion. Metabolic adaptation is a controlled process aimed at homeostasis support under hypoxia. The adaptive mechanism is realized through the remodeling of metabolic state depending on adaptation period duration.

  1. Pshennikova M.G. Vrozhdennaya effektivnost' stress-limitiruyushchikh sistem kak faktor ustoychivosti k stressornym povrezhdeniyam [Congenital efficiency of stress-limited systems as resistance factor to stress injuries]. Uspekhi fiziologicheskikh nauk — Advances in Physiological Sciences 2003; 34(3): 55–67.
  2. Luk’yanova L.D. Rol’ bioenergeticheskikh narusheniy v patogeneze gipoksii [The role of bioenergetic disorders in hypoxic pathogenesis]. Patologicheskaya fiziologiya i eksperimental’naya terapiya — Pathologic Physiology and Experimental Therapy 2004; 2: 2–11.
  3. Espey M.G. Tumor macrophage redox and effector mechanisms associated with hypoxia. Free Radicals Biology and Medicine 2006; 41: 1621–1628.
  4. Balduini W. Long lasting behavioral alterations following a hypoxic/ischemic brain injury in neonatal rats. Brain Research 2000; 859: 318–325.
  5. Men’shikova E.B., Lankin V.Z., Zenkov N.K., Bondar’ I.A., Krugovykh N.F., Trufakin V.A. Okislitel’nyy stress. Prooksidanty i antioksidanty [Oxidative stress. Pro-oxidants and antioxidants]. Moscow: Slovo; 2006; 556 p.
  6. Boldyrev A.A. Rol’ aktivnykh form kisloroda v zhiznedeyatel’nosti neyrona [The role of reactive oxygen species in neuron activity]. Uspekhi fiziologicheskikh nauk — Advances in Physiological Sciences 2003, 34(3): 21–34.
  7. Samoylenkova N.S., Gavrilova S.A., Koshelev V.B. Neyroprotektornyy i angioprotektornyy effekty ishemicheskogo/gipoksicheskogo prekonditsionirovaniya mozga [Neuroprotective and angioprotective effects of ischemis/hypoxic brain preconditioning]. Regional’noe krovoobrashchenie i mikrotsirkulyatsiya — Regional Blood Circulation and Microcirculation 2008; 7(1): 82–91.
  8. Durukan A., Tatlisumak T. Preconditioning-induced ischemic tolerance: a window into endogenous gearing for cerebroprotection. Experimental & Translational Stroke Medicine 2010 January 21; 2(2): 125–127.
  9. Luk’yanova L.D., Germanova E.L., Kopaladze R.A. Zakonomernosti formirovaniya rezistentnosti organizma pri raznykh rezhimakh gipoksicheskogo prekonditsionirovaniya: rol’ gipoksicheskogo perioda i reoksigenatsii [Regularities of body resistance formation in various hypoxic preconditioning modes: the role of hypoxic period and reoxygenation]. Byull Eksp Biol Med — Bulletin of Experimental Biology and Medicine 2009; 147(4): 380–384.
  10. Moshkova A.N., Erlykina E.I., Sergeeva T.F., Khvatova E.M. Podkhody k prognozirovaniyu adaptivnogo sostoyaniya energeticheskoy sistemy mozga v usloviyakh gipoksii [Approaches to prediction of adaptive state of brain energy system under hypoxia]. Byull Eksp Biol Med — Bulletin of Experimental Biology and Medicine 2010; 149(3): 282–285.
  11. Moshkova A.N., Khvatova E.M. Primenenie regressionnykh modeley dlya otsenki vliyaniya gipoksii na energeticheskoe sostoyanie mozga [The use of regression models to assess the effect of hypoxia on brain energy state]. Patogenez — Pathogenesis 2011; 9(3): 48–49.
  12. Khvatova E.M., Erlykina E.I., Gaynulin M.R. Printsipy fermentativnoy regulyatsii metabolizma mozga v usloviyakh ishemii i adaptatsii k kislorodnomu stressu. V kn.: Tez. dokl. Vseros. nauchnoy konferentsii “Neyrokhimiya: fundamental’nye i prikladnye aspekty” [The principles of enzymatic regulation of brain metabolism under hypoxia and oxygen stress adaptation. In: Scientific conference abstracts of All-Russian scientific conference “Neurochemistry: fundamental and applied aspects”. March 14–16, 2005]. Moscow; 2005.
  13. Sergeeva T.F., Demina E.I., Erlykina E.I. Sostoyanie pro- i antioksidantnykh sistem v tkani mozga i krovi pri kratkosrochnom gipoksicheskom prekonditsionirovanii. [The condition of pro- and antioxidant systems in brain tissue and blood in short-term hypoxic preconditioning]. Omskiy nauchnyy vestnik — Omsk Scientific Review 2011; 1: 95–97.
  14. Pucar D., Dzeja P.P., Bast P. Cellular Energetics in the Preconditioned State. J Biol Chem 2001; 276(48): 44812–44819.
  15. Khiggins K. Rasshifrovka klinicheskikh laboratornykh analizov [Interpretation of clinical laboratory analyses]. Moscow: BINOM. Laboratoriya znaniy; 2008; 376 p.
  16. Terekhina N.A., Nenasheva O.Yu. Khemilyuminestsentnyy analiz biologicheskikh zhidkostey bol’nykh sakharnym diabetom [Chemiluminescence analysis of body fluids of patients with diabetes mellitus]. Klinicheskaya laboratornaya diagnostika — Clinical Laboratory Diagnostics 2004; 11: 38–39.
  17. Glants S. Mediko-biologicheskaya statistika [Biomedical statistics]. Moscow: Praktika; 1999; 459 p.
  18. Orellana J.A. Modulation of brain hemichannels and Gap junction channels by pro-inflammatory agents and their possible role in neurodegeneration. Antioxid Redox Signal 2009; 11(2): 369–399.
  19. Nagdyman N., Grimmer I., Scholz T. Predictive value of brain-specific proteins in serum for neurodevelopmental outcome after birth asphyxia. Pediatr Res 2003; 54(2): 270–275.
  20. Karyakina G.M., Nadezhdina M.V., Khinko M.A. Neyrospetsificheskaya enolaza kak indikator porazheniya mozgovoy tkani pri ishemicheskikh insul’takh [Neurospecific enolase as an indicator of brain tissue lesion in ischemic stroke]. Nevrologicheskiy vestnik — Neurology Reporter 2007; 39(1): 41–44.
  21. Vlasov T.D., Korzhevskii D.E., Polyakova E.A. Ischemic preconditioning of the rat brain as a method of endothelial protection from ischemic/repercussion injury. Neurosci Behav Physiol 2005; 35(6): 567–572.
  22. Luk'yanova L.D. Sovremennye problemy adaptatsii k gipoksii. Signal'nye mekhanizmy i ikh rol' v sistemnoy regulyatsii [Modern problems of adaptation and hypoxia. Signal mechanisms and their role in systemic regulation]. Patologicheskaya fiziologiya i eksperimental’naya terapiya — Pathologic Physiology and Experimental Therapy 2011; 1: 3–19.
Murach E.I., Erlykina E.I. The Principles of Protective Effects Formation Using Different Hypoxic Preconditioning Modes. Sovremennye tehnologii v medicine 2013; 5(1): 21


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank