Today: Dec 30, 2024
RU / EN
Last update: Dec 27, 2024
The Effect of Non-coherent Impulse Radiation on Functional Status of Mononuclear Cells in Experiment

The Effect of Non-coherent Impulse Radiation on Functional Status of Mononuclear Cells in Experiment

Arkhipova Е.V., Ivanova I.P.
Key words: mononuclear cells; phagocytosis; neutrophil NADPH-oxidase; DNA; RNA; non-coherent plasma radiation.
2013, volume 5, issue 1, page 27.

Full text

pdf
0
1437

The aim of the investigation was to study the effect of non-coherent impulse radiation on functional status of mononuclear cells in experiment.

Materials and Methods. In vivo experiments were carried out on white outbred male rats exposed to non-coherent impulse radiation with the following set-up parameters: impulse time — 10 µs, amperage — 1 kA, electrode voltage — 10 kV, pulse energy — 5 J, frequency — 1 Hz. We used two exposure modes on animals: three times within a minute, and three times within 2 min.

We studied the state of oxygen-dependent neutrophil metabolism using spontaneous and induced NBT-test (NBT — nitro blue tetrazolium), assessed the activity of phagocytosis by latex particles phagocytosis, and determined spectrophotometrically the concentration of nucleic acids in lymphocytes of peripheral blood.

Results. One-minute exposure caused no significant changes of functional status of mononuclear cells. Two-minute exposure resulted in NADPH-oxidase activation in neutrophil plasma membrane. Cell phagocytic rate was found to increase when the animals were exposed to non-coherent impulse radiation. Phagocytic index and phagocytic number increased of 21.84 and 45.28% respectively. There was revealed the increase of DNA concentration in lymphocytes of peripheral blood in rats.

  1. Medzhitov R., Dzhanevey Ch. Vrozhdennyy immunitet [Congenital immunity]. Kaz Med Z — Kazan Medical Journal 2004; 85(3): 161–167.
  2. Ivanova I.P., Trofimova S.V., Piskarev I.M., et al. Vliyanie aktivnykh form kisloroda nizkotemperaturnoy gazorazryadnoy plazmy na rezistentnost' membran kletok [The effect of reactive oxygen species of low-temperature gas-discharge plasma on cell membrane resistance]. Vestnik Nizhegorodskogo gosudarstvennogo universiteta im. N.I. Lobachevskogo — Herald of Nizhny Novgorod State University named after N.I. Lobachevsky 2011; 2(2): 190–195.
  3. Vasilets V.N., Gutsol A., Shekhter A.B., Fridman A. Plazmennaya meditsina [Plasma medicine]. Khimiya vysokikh energiy — High-energy Chemistry 2009; 43(3): 276–280.
  4. Ivanova I.P., Zaslavskaya M.I. Biotsidnyy effekt nekogerentnogo impul’snogo izlucheniya iskrovogo razryada v eksperimente in vitro i in vivo [Biocydic effect of the spark discharge non-coherent impulse radiation in experiments in vitro and in vivo]. Sovrem Tehnol Med — Modern Technologies in Medicine 2009; 1: 28–31.
  5. Kanazawa S., Kawano H., Watanabe S., Furuki T., Akamine S., Ichiki R., Ohkubo T., Kocik M., Mizeraczyk J. Observation of OH radicals produced by pulsed discharges on the surface of a liquid. Plasma Sources Sci Technol 2011; 20(3): 383–391.
  6. Ivanova I.P., Trofimova S.V., Karpel Vel Leitner N., Аristova N.А., Arkhipova Е.V., Burkhina О.Е., Sysoeva V.А., Piskaryov I.M. Analiz aktivnykh produktov izlucheniya plazmy iskrovogo razryada, opredelyayushchikh biologicheskie effekty v kletkakh [The analysis of active products of spark discharge plasma radiation determining biological effects in tissues]. Sovrem Tehnol Med — Modern Technologies in Medicine 2012; 2: 20–30.
  7. Dontsov V.I., Krut’ko V.N., Mrikaev B.M., Ukhanov S.V. Aktivnye formy kisloroda kak sistema: znachenie v fiziologii, patologii i estestvennom starenii [Reactive oxygen species as a system: significance in physiology, pathology and natural ageing]. Trudy ISA RAN — Proceedings of System Analysis Institute of Russian Academy of Sciences 2006; 19: 50–69.
  8. Artyukhov V.G., Nakvasina M.A., Popova L.I., et al. Strukturno-funktsional’nye modifikatsii limfotsitarnykh kletok cheloveka v usloviyakh vozdeystviya aktivnykh form kisloroda [Structural functional modifications of human lymphocytic cells when exposed to reactive oxygen species]. Vestnik VGU Ser. Khimiya, biologiya, farmakologiya — VSU Review, Series Chemistry, Biology, Pharmacology 2005; 2: 110–115.
  9. Ivanova I.P., Trofimova S.V., Piskaryov I.M., Burkhina О.Е., Sysoeva V.А., Karpel Vel Leitner N. Issledovanie mekhanizmov biotsidnogo deystviya izlucheniya plazmy iskrovogo razryada [The study of biocidal mechanisms of spark discharge plasma radiation]. Sovrem Tehnol Med — Modern Technologies in Medicine 2012; 3: 12–18.
  10. Droge W. Free radicals in the physiological control of cell function. Physiological Reviews 2002; 82: 47–95.
  11. Gamaley I.A., Klyubin I.V. Roles of reactive oxygen species: signaling and regulation of cellular functions. Int Rev Cytol 1999; 188: 203–215.
  12. Spirov G.M., Luk’yanov N.B., Shlepkin S.I., Volkov A.A., Moiseenko A.N., Markevtsev I.M., Ivanova I.P., Zaslavskaya M.I. Ustroystvo dlya vozdeystviya na bioob”ekt [Bio-object exposure device]. Patent RF №2358773. 2009.
  13. Ivanova I.P., Prodanets N.N., Burenina Yu.V. Effekt vliyaniya vysokoenergeticheskogo impul’snogo izlucheniya na metabolizm zhivotnykh v norme i s limfosarkomoy Plissa [The effect of high-energy impulse radiation on metabolism in healthy animals and in animals with Pliss lymphosarcoma]. Byulleten’ Sibirskoy meditsiny — Bulletin of Siberian Medicine 2005; 2: 88–90.
  14. Biokhimiya i molekulyarnaya biologiya [Biochemistry and molecular biology]. Pod red. Titovoy N.M., Zamay T.N., Borovkovoy G.I. [Titova N.M., Zamay T.N., Borovkova G.I. (editors)]. Krasnoyarsk: IPK SFU; 2008; 103 p.
  15. Glants S. Mediko-biologicheskaya statistika [Biomedical statistics]. Moscow: Praktika; 1999; 459 p.
  16. Pinegin B.V., Krasnova M.I. Makrofagi: svoystva i funktsii [Macrophages: characteristics and functions]. Immunologiya — Immunology 2009; 4: 241–249.
  17. Gerasimov I.G., Ignatov D.Yu. Osobennosti aktivatsii neytrofilov in vitro [The characteristics of neutrophil activation in vitro]. Tsitologiya — Cytology 2004; 46(2): 155–158.
  18. Mayanskiy A.N. NADFN-oksidaza neytrofilov: aktivatsiya i regulyatsiya [Neutrophil NADPH-oxidase: activation and regulation]. Tsitokiny i vospalenie — Cytokines and Inflammation 2007; 6(3): 3–13.
  19. Sheppard F.R., Kelher M.R., Moore E.E., et al. Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. Journal of Leukocyte Biology 2005; 78: 1025–1042.
  20. Alvarez-Maqueda M.E., Bekay R., Monteseirin J., Alba G., Chacon P., Vega A., Santa M.C., Tejedo J.R., Martin-Nieto J., Bedoya F.J., Pintado E., Sobrino F. Homocysteine enhances superoxide anion release and NADPH oxidase assembly by human neutrophils. Effects on MAPK activation and neutrophil migration. Atherosclerosis 2004; 172: 229–238.
  21. M’Rabet L., Coffer P., Zwartkruis F., et al. Activation of the small GTPase rap1 in human neutrophils. Blood 1998; 92: 2133–2140.
  22. Kovalenko E.I., Semenkova G.N., Cherenkevich S.N. Vliyanie peroksida vodoroda na sposobnost’ neytrofilov generirovat’ aktivnye formy kisloroda i khlora i sekretirovat’ mieloperoksidazu in vitro [The effect of hydrogen peroxide on neutrophil ability to generate reactive oxygen and chloride species and secrete myeloperoxidase in vitro]. Tsitologiya — Cytology 2007; 49(10): 839–847.
  23. Beebe S.J. and SchoenbachK. H. Nanosecond pulsed electric fields: a new stimulus to activate intracellular signaling. Journal of Biomedicine and Biotechnology 2005; 4: 297–300.
  24. Karu T.Y. Kletochnye mekhanizmy nizkointensivnoy lazernoy terapii [Cell mechanisms of low-intensity laser therapy]. Uspekhi sovremennoy biologii — Advance of Modern Biology 2001; 121(1): 110–120.
  25. Men’shchikova E.B., Lankin V.Z., Zenkov N.K., Bondar’ I.A., Krugovykh N.F., Trufakin V.A. Okislitel’nyy stress. Prooksidanty i antioksidanty [Oxidative stress. Pro-oxidants and antioxidants]. Moscow: Slovo; 2006; 556 p.
  26. Hattoria H., Subramaniana K. Small-molecule screen identifies reactive oxygen species as key regulators of neutrophil chemotaxis. PNAS 2010; 107(8): 546–551.
  27. Artyukhov V.G., Trubitsina M.S., Nakvasina M.A., Solov’eva E.V. Fragmentatsiya DNK limfotsitov cheloveka v dinamike razvitiya apoptoza, indutsirovannogo vozdeystviem UF-izlucheniya i aktivnykh form kisloroda [Fragmentation of human lymphocyte DNA in dynamics of apoptosis induced by UV radiation and reactive oxygen species]. Tsitologiya — Cytology 2011; 53(1): 61–67.
  28. Finkel T., Holbrook N. Oxidants, oxidative stress and the biology of ageing. Nature 2000; 408: 239–247.
Arkhipova Е.V., Ivanova I.P. The Effect of Non-coherent Impulse Radiation on Functional Status of Mononuclear Cells in Experiment. Sovremennye tehnologii v medicine 2013; 5(1): 27


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank