Today: Dec 21, 2024
RU / EN
Last update: Oct 30, 2024
The Assessment of Efficiency of Local Delivery Pathways of Therapeutic Genes in Murine Spinal Cord Injury: Correlation of Structure and Function Parameters

The Assessment of Efficiency of Local Delivery Pathways of Therapeutic Genes in Murine Spinal Cord Injury: Correlation of Structure and Function Parameters

Shaymardanova G.F., Mukhamedshina Y.О., Chelyshev Y.А.
Key words: spinal cord; spinal regeneration; local gene delivery; umbilical cord blood cells; VEGF, FGF2 plasmids.
2013, volume 5, issue 3, page 16.

Full text

pdf
0
1728

The aim of the investigation was to assess the efficiency of posttraumatic regeneration of murine spinal cord in immediate single administration of human umbilical cord mononuclear blood cells transfected by pBud-VEGF-FGF2 plasmid, and direct injection of this plasmid in the damage area. Two problems were to be solved: to reveal the correlation between morphological and functional spinal cord indices and estimate the amount of S100B+-cells in the conditions of local delivery of vegf and fgf2 genes on cellular carriers or in direct gene therapy.

Materials and Methods. The rats after dosing contusion spinal cord injury (ТVIII level) were divided into four groups. One group animals were administered umbilical cord mononuclear blood cells transfected by pBud-VEGF-FGF2 plasmid in damage area, the animals of another group were administered the same cells transfected by pEGFP-N2 plasmid in similar conditions. The animals of other two groups were injected pBud-VEGF-FGF2 plasmid in the same area in one case, and another — the same amount of pEGFP-N2 plasmid.

Results. We established direct negative correlation between the damage area size and the motor function recovery index in experiments with a direct injection of pBud-VEGF-FGF2 plasmid. The highest correlation coefficient was obtained at the distance of 5 mm away from injury epicenter. In case of transplantation of cells transfected by this plasmid there was no correlation. The number of S100B+-cells in exterior zones of white matter at the distance of 1.5 cm from the injury epicenter under the conditions of direct gene delivery increased by 46% (p<0.05). If umbilical cord blood cells transfected by pBud-VEGF-FGF2 plasmid were administered the index grew by 55% (p<0.05).

Conclusion. In the course of regeneration after contusion spinal cord injury, the damage area reduction and related motor function recovery is more effective in direct gene therapy compared to the delivery of the same genes on cellular carriers.

  1. Chelyshev Yu.A., Shaymardanova G.F., Mukhamedshina Ya.O., Islamov R.R., Rizvanov A.A., Salafutdinov I.I. Sposob stimulirovaniya neyroregeneratsii s pomoshch’yu geneticheskikh konstruktsiy [The method of neuroregeneration stimulation using genetic makers]. Patent RF 2459630 C1. 2012.
  2. Mackenzie F., MacRuhrberg C. Diverse roles for VEGF-A in the nervous system. Development 2012 Apr; 139(8): 1371–80.
  3. Moftah M., Landry M., Nagy F., Cabelguen J.M. Fibroblast growth factor-2 mRNA expression in the brainstem and spinal cord of normal and chronic spinally transected urodeles. J Neurosci Res 2008 Nov 15; 86(15): 3348–3358.
  4. Guzen F.P., Soares J.G., de Freitas L.M., Cavalcanti J.R., Oliveira F.G., Araújo J.F., Cavalcante Jde. S., Cavalcante J.C., do Nascimento E.S. Jr., de Oliveira Costa M.S. Sciatic nerve grafting and inoculation of FGF-2 promotes improvement of motor behavior and fiber regrowth in rats with spinal cord transaction. Restor Neurol Neurosci 2012; 30(3): 265–275.
  5. Ohori Y., Yamamoto S., Nagao M., Sugimori M., Yamamoto N., Nakamura K., Nakafuku M. Growth factor treatment and genetic manipulation stimulate neurogenesis and oligodendrogenesis by endogenous neural progenitors in the injured adult spinal cord. J Neurosci 2006 Nov 15; 26(46): 11948–11960.
  6. Yang Y.L. Effect of adenovirus-mediated basic fibroblast growth factor gene transfer in vivo on oligodendrocyte cell numbers throughout ventrolateral white matter following spinal cord injury in rats. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2012 Aug; 34(4): 348–352.
  7. Seghezzi G., Patel S., Ren C.J., Gualandris A., Pintucci G., Robbins E.S., Shapiro R.L., Galloway A.C., Rifkin D.B., Mignatti P. Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 1998 Jun 29; 141(7): 1659–1673.
  8. Apfel S.C. Nerve growth factor for the treatment of diabetic neuropathy: what went wrong, what went right, and what does the future hold? Int Rev Neurobiol 2002; 50: 393–413.
  9. Chelyshev Yu.A., Mukhamedshina Ya.O., Shaymarda-nova G.F., Nikolaev S.I. Pryamaya dostavka terapevticheskikh genov dlya stimulirovaniya posttravmaticheskoy neyroregeneratsii [Direct delivery of therapeutic genes to stimulate posttraumatic neurogeneration]. Nevrologicheskiy vestnik (zhurnal im. V.M. Bekhtereva) — Neurological Bulletin named after V.M. Bekhterev 2012; 64(1): 76–83.
  10. Chelyshev Yu.A., Viktorov I.V. Kletochnye tekhnologii remielinizatsii pri travme spinnogo mozga [Cellular technologies of remyelinization in spinal cord injury]. Nevrologicheskiy vestnik (zhurnal im. V.M. Bekhtereva) — Neurological Bulletin named after V.M. Bekhterev 2009; 1: 49–55.
  11. Gerin C.G., Madueke I.C., Perkins T., Hill S., Smith K., Haley B., Allen S.A., Garcia R.P., Paunesku T., Woloschak G. Combination strategies for repair, plasticity, and regeneration using regulation of gene expression during the chronic phase after spinal cord injury. Synapse 2011 Dec; 65(12): 1255–1281.
  12. Deng X.Y., Zhou R.P., Lu K.W., Jin D.D. Lithium chloride combined with human umbilical cord blood mesenchymal stem cell transplantation for treatment of spinal cord injury in rats. Nan Fang Yi Ke Da Xue Xue Bao 2010 Nov; 30(11): 2436–2439.
  13. Kim J.Y., Jeon H.B., Yang Y.S., Oh W., Chang J.W. Application of human umbilical cord blood-derived mesenchymal stem cells in disease models. World J Stem Cells 2010 April 26; 2(2): 34–38.
  14. Kaner T., Karadag T., Cirak B., Erken H.A., Karabulut A., Kiroglu Y., Akkaya S., Acar F., Coskun E., Genc O., Colakoglu N. The effects of human umbilical cord blood transplantation in rats with experimentally induced spinal cord injury. J Neurosurg Spine 2010 Oct; 13(4): 543–551.
  15. Chua S.J., Bielecki R., Yamanaka N., Fehlings M.G., Rogers I.M., Casper R.F. The effect of umbilical cord blood cells on outcomes after experimental traumatic spinal cord injury. Spine (Phila Pa 1976) 2010 Jul 15; 35(16): 1520–1526.
  16. Yao L., He C., Zhao Y., Wang J., Tang M., Li J., Wu Y., Ao L., Hu X. Human umbilical cord blood stem cell transplantation for the treatment of chronic spinal cord injury. Neural Regen Res 2013; 8(5): 397–403.
  17. Shaymardanova G.F., Mukhamedshina Ya.O., Rizvanov A.A., Salafutdinov I.I., Chelyshev Yu.A. Primenenie plazmidnogo vektora s genami vegf i fgf2 pri travmaticheskom povrezhdenii spinnogo mozga krysy [The use of plasmid vector with VEGF and FGF2 genes in murine spinal cord injury]. Kletochnye tekhnologii v biologii i meditsine — Cellular technologies in biology and medicine 2012; 4: 200–204.
  18. Shaymardanova G.F., Mukhamedshina Ya.O., Arkhipova S.S., Salafutdinov I.I., Rizvanov A.A., Chelyshev Yu.A. Posttravmaticheskie izmeneniya spinnogo mozga krysy pri transplantatsii mononuklearnykh kletok krovi pupoviny cheloveka, modifitsirovannykh genami vegf i fgf2 [Posttraumatic changes of murine spinal cord in the transplantation of human umbilical cord blood mononuclear cell modified by VEGF and FGF2 genes]. Morfologiya — Morphology 2011; 6: 36–42.
  19. Shaymardanova G.F., Mukhamedshina Ya.O., Rizva­nov ?A.A., Salafutdinov I.I., Chelyshev Yu.A. Effekt transplantatsii v oblast’ travmaticheskogo povrezhdeniya spinnogo mozga krysy mononuklearnykh kletok krovi pupoviny cheloveka, ekspressiruyushchikh rekombinantnye geny VEGF i FGF2 [The transplantation effect of human umbilical cord blood cells expressing recombinant VEGF and FGF2 genes in the damage area of spinal cord injury in rats]. Morfologiya — Morphology 2012; 142(4): 31–36.
  20. Matyash V., Kettenmann H. Heterogeneity in astrocyte morphology and physiology. Brain Res Rev 2010 May; 63(1–2): 2–10.
  21. Allaman I., Bélanger M., Magistretti P.J. Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci 2011 Feb; 34(2): 76–87.
  22. Lebedev S.V., Timofeev S.V., Zharkov A.V., Shipilov V.G., Chelyshev Yu.A., Masgutova G.A., Chekhonin V.P. Nagruzochnye testy i metod VVV pri otsenke dvigatel’nykh narusheniy posle kontuzionnoy travmy spinnogo mozga [Stress tests and VVV method in the assessment of motor disturbances after contusion spinal brain injury]. Bull Eksp Biol Med — Bulletin of Experimental Biology and Medicine 2008; 145(10): 471–476.
  23. Rizvanov A.A., Kiyasov A.P., Gaziziov I.M., et al. Human umbilical cord blood cells transfected with VEGF and L(1)CAM do not differentiate into neurons but transform into vascular endothelial cells and secrete neuro-trophic factors to support neurogenesis — a novel approach in stem cell therapy. Neurochem Int 2008 Dec; 53(6–8): 389–394.
  24. Basso D.M., Beattie M.S., Bresnahan J.C. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 1995 Feb; 12(1): 1–21.
  25. Shen C.T., Foo N.H., Liu W.S., Chen S.H. Infusion of human umbilical cord blood cells ameliorates hind limb dysfunction in experimental spinal cord injury through anti-inflammatory, vasculogenic and neurotrophic mechanisms. Pediatr Neonatol 2008 Jun; 49(3): 77–83.
  26. Adami C., Sorci G., Blasi E., Agneletti A.L., Bistoni F., Donato R. S100B expression in and effects on microglia. Glia 2001 Feb; 33: 131–142.
  27. Rothermundt M., Peters M., Prehn J.H., Arolt V. S100B in brain damage and neurodegeneration. Microsc Res Tech 2003 Apr; 60(6): 614–632.
Shaymardanova G.F., Mukhamedshina Y.О., Chelyshev Y.А. The Assessment of Efficiency of Local Delivery Pathways of Therapeutic Genes in Murine Spinal Cord Injury: Correlation of Structure and Function Parameters. Sovremennye tehnologii v medicine 2013; 5(3): 16


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank