Today: Dec 21, 2024
RU / EN
Last update: Oct 30, 2024
Improved Arterial Tissue Differentiation  by Spectroscopic Optical Coherence Tomography

Improved Arterial Tissue Differentiation by Spectroscopic Optical Coherence Tomography

Flueraru C., Popescu D.P., Mao Y., Chang S., Sowa M.G., Vitkin A.
Key words: optical coherence tomography; quantitative and spectral analysis; WHHLMI rabbits.
2015, volume 7, issue 1, page 13.

Full text

html pdf
1645
1767

Optical coherence tomography (OCT) is a relatively new imaging modality similar with ultrasound where the sound waves are replaced by ballistic photons. OCT provides images at high spatial resolution which allow for the identification of micron size morphological tissue structures. A high impact application is visualization of arterial wall and atherosclerotic plaques. Despite high spatial resolution to complete the transfer of this imaging modality into clinical environment there is a need for markers which would quantify the physiological condition of the sample. Finding the proper markers is a topic of high interest for many research groups. A potential marker suggested by the OCT community is the optical attenuation coefficient. Although OCT image itself provides important diagnostic and structural information there are also new methods of tissue characterization that have been developed through spectroscopic OCT and quantitative OCT. Spectroscopic OCT investigates the spectral response while the quantitative OCT extends the investigation to non-spectral parameters. Here we investigate two procedures for calculation of optical attenuation coefficient dependence versus wavelength. The wavelength analysis will provide new insight into the chemical nature of the sample, because the spectral backreflected signal depends on sample absorption and scattering properties. In this study we demonstrate the application of OCT for quantitative and spectral analysis of vulnerable plaque morphology on Watanabe heritable hyperlipidemic myocardial infarction (WHHLMI) rabbit model. The results suggest that the spectral dependence of the derived OCT attenuation coefficient can be used for tissue differentiation. We demonstrated that differences and the spectral dependence of the optical attenuation coefficient are linked to the macrophage content of the region of interest.

  1. Tearney G.J., Jang I.-K., Bouma B.E. Optical coherence tomography for imaging the vulnerable plaque. J Biomed Opt 2006; 11(2): 021002, http://dx.doi.org/10.1117/1.2192697.
  2. Xu C., Schmitt J.M., Carlier S.G., Virmani R. Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography. J Biomed Opt 2008; 13(3): 034003, http://dx.doi.org/10.1117/1.2927464.
  3. Kubo T, Imanishi T., Takarada S., Kuroi A., Ueno S., Yamano T., Tanimoto T., Matsuo Y., Masho T., Kitabata H., Tsuda K., Tomobuchi Y., Akasaka T. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol 2007; 50(10): 933–939, http://dx.doi.org/10.1016/j.jacc.2007.04.082.
  4. Jang I.K, Tearney G.J., MacNeil B., Takano M., Moselewski F., Iftimia N., Shishkov M., Houser S., Aretz H.T., Halpern E.F., Bouma B.E. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 2005; 111(12): 1551–1555, http://dx.doi.org/10.1161/01.CIR.0000159354.43778.69.
  5. Liu L., Gardecki J.A., Nadkarni S.K., Toussaint J.D., Yagi Y., Bouma B.E., Tearney G.J. Imaging the subcellular structure of human coronary athero­sclerosis using micro-optical coherence tomography. Nat Med 2011; 17(8): 1010–1014, http://dx.doi.org/10.1038/nm.2409.
  6. Yabushita H., Bouma B.E., Houser S.L., Aretz H.T., Jang I.-K., Schlendorf K.H., Kauffman C.R., Shishkov M., Kang D.-H., Halpern E.F., Tearney G.J. Characterization of human atherosclerosis by optical coherence tomography. Circulation 2002; 106(13): 1640–1645, http://dx.doi.org/10.1161/01.CIR.0000029927.92825.F6.
  7. Jang I.-K., Bouma B.E., Kang D.-H., Park S.-J., Park S.-W., Seung K.-B., Choi K.-B., Shishkov M., Schlendorf K., Pomerantsev E., Houser S.L., Aretz H.T., Tearney G.J., Visualization of coronary atherosclerotic plaques in patients with optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol 2002; 39(4): 604–609, http://dx.doi.org/10.1016/s0735-1097(01)01799-5.
  8. Popescu D.P., Flueraru C., Mao Y., Chang S., Sowa M.G. Signal attenuation and box-counting fractal analysis of optical coherence tomography images of arterial tissue. Biomed Opt Exp 2010; 1(1): 268–277, http://dx.doi.org/10.1364/boe.1.000268.
  9. Flueraru C., Popescu D.P., Mao Y., Chang S., Sowa M.G. Added soft tissue contrast using signal attenuation and the fractal dimension for optical coherence tomography images of porcine arterial tissue. Phys Med Biol 2010; 55: 2317–2331, http://dx.doi.org/10.1088/0031-9155/55/8/013.
  10. Oldenburg A.L., Xu C., Boppart S.A. Spectroscopic optical coherence tomography and microscopy. IEEE J Select Topics Quantum Electron 2007; 13(6): 1629–1640, http://dx.doi.org/10.1109/jstqe.2007.910292.
  11. Radosevich A.J., Rogers J.D., Turzhitsky V., Mutyal N.N., Yi J., Roy H.K., Backman V. Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length scales. IEEE J Select Topics Quantum Electron 2012; 18(4): 1313–1325, http://dx.doi.org/10.1109/jstqe.2011.2173659.
  12. Jaedicke V., Agcaer S., Robles F.E., Steinert M., Jones D., Goebel S., Gerhardt N.C., Welp H., Hofmann M.R. Comparison of different metrics for analysis and visualization in spectroscopic optical coherence tomography. Biomed Opt Exp 2013; 4(12): 2945–2961, http://dx.doi.org/10.1364/BOE.4.002945.
  13. Mao Y., Flueraru C., Chang S., Popescu D.P., Sowa M.G. Performance analysis of a swept-source optical coherence tomography system with a quadrature interferometer and optical amplification. Opt Comm 2011; 284(10–11): 2622–2627, http://dx.doi.org/10.1016/j.optcom.2011.01.016.
  14. Mao Y., Flueraru C., Chang S., Popescu D.P., Sowa M.G. High-quality tissue imaging using a catheter-based swept-source optical coherence tomography system with an integrated semiconductor optical amplifier. IEEE Trans on Instrum Measur 2011; 60(10): 3376–3383, http://dx.doi.org/10.1109/tim.2011.2126950.
  15. Flueraru C., Kumazaki H., Sherif S., Chang S., Mao Y. Quadrature Mach–Zehnder interferometer with application in optical coherence tomography. J Optics A: Pure and Applied Optics 2007; 9(4): L5–L8, http://dx.doi.org/10.1088/1464-4258/9/4/L01.
  16. Flueraru C., Chang S., Sherif S. Interferometric system for complex image extraction. US Patent No.7,508,523. 2009.
  17. Mao Y., Chang S., Sherif S., Flueraru C. Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging. Appl Opt 2007; 46(23): 5887–5894, http://dx.doi.org/10.1364/AO.46.005887.
  18. Shiomi M., Ito T., Yamada S., Kawashima S., Fan J. Development of an animal model for spontaneous myocardial infarction (WHHLMI-rabbit). Atheroscler Thromb Vasc Biol 2003; 23(7): 1239–1244, http://dx.doi.org/10.1161/01.ATV.0000075947.28567.50.
  19. Watanabe Y. Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL-rabbit). Atherosclerosis 1980; 36(2): 261–268, http://dx.doi.org/10.1016/0021-9150(80)90234-8.
  20. Schmitt J.M., Knuttel A., Yadlowsky M., Eckhauss M.A. Optical coherence tomography of a dense tissue: statistics of attenuation and backscattering. Phys Med Biol 1994; 39(10): 1705–1720, http://dx.doi.org/10.1088/0031-9155/39/10/013.
  21. Thrane L., Yura H.T., Andersen P.E. Analysis of optical coherence tomography systems based on the extended Huygens Fresnel principle. J Opt Soc Am A 2000; 17(3); 484–490, http://dx.doi.org/10.1364/JOSAA.17.000484.
  22. Faber D., Van Der Meer F., Aalders M., van Leeuwen T. Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography. Opt Express 2004; 12(19): 4353–4365, http://dx.doi.org/10.1364/OPEX.12.004353.
  23. Turchin I.V., Sergeeva E.A., Dolin L.S., Kamensky V.A., Shakhova N.M., Richards-Kortum R. Novel algorithm of processing optical coherence tomography images for differentiation of biological tissue pathologies. J Biomed Opt 2005; 10(6): 064024, http://dx.doi.org/10.1117/1.2137670.
  24. Turchin I.V., Sergeeva E.A., Dolin L.S., Kamensky V.A. Estimation of biotissue scattering properties from OCT images using a small-angle approximation of transport theory. Laser Physics 2003; 13(12): 1524–1529.
  25. Morgner U., Drexler W., Kartner F.X., Li X.D., Pitris C., Ippen E.P., Fujimoto J.G. Spectroscopic optical coherence tomography. Opt Lett 2000; 25(2): 111–113, http://dx.doi.org/10.1364/ol.25.000111.
  26. Leitgeb R., Wojtkowski M., Kowalczyk A., Hitzenberger C.K., Sticker M., Fecher A. Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography. Opt Lett 2000; 25(11): 820–822, http://dx.doi.org/10.1364/ol.25.000820.
  27. Robles F., Graf R.N., Wax A. Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution. Opt Exp 2009; 17(8): 6799–6812, http://dx.doi.org/10.1364/oe.17.006799.
  28. Kraszewski M., Trojanowski M., Strakowski M.R. Quantitative comparison of analysis methods for spectroscopic optical coherence tomography: comment. Biomed Opt Exp 2014; 5(9): 3023–3033, http://dx.doi.org/10.1364/BOE.5.003023.
  29. Bosschaart N., van Leeuwen T.G., Aalders M.C., Faber D.J., Quantitative comparison of analysis methods for spectroscopic optical coherence tomography: reply to comment. Biomed Opt Exp 2014; 5(9): 3034–3035, http://dx.doi.org/10.1364/boe.5.003034.
  30. Prati F., Regar E., Mintz G.S., Arbustini E., Di Mario C., Jang I.-K., Akasaka T., Costa M., Guagliumi G., Grube E., Ozaki Y., Pinto F., Serruys P.W.J. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J 2010; 31(4): 401–415, http://dx.doi.org/10.1093/eurheartj/ehp433.
  31. Yonetsu T., Kakuta T., Lee T., Takahashi K., Kawaguchi N., Yamamoto G., Koura K., Hishikari K., Iesaka Y., Fujiwara H., Isobe M. In vivo critical fibrous cap thickness for rupture-prone coronary plaques assessed by optical coherence tomography. Eur Heart J 2011; 32(10): 1251–1259, http://dx.doi.org/10.1093/eurheartj/ehq518.
Flueraru C., Popescu D.P., Mao Y., Chang S., Sowa M.G., Vitkin A. Improved Arterial Tissue Differentiation by Spectroscopic Optical Coherence Tomography. Sovremennye tehnologii v medicine 2015; 7(1): 13, https://doi.org/10.17691/stm2015.7.1.02


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank