Today: Dec 21, 2024
RU / EN
Last update: Oct 30, 2024
Echotrecking Is a Novel Technology to Assess Structural and Functional Properties of Carotid Arteries (Review)

Echotrecking Is a Novel Technology to Assess Structural and Functional Properties of Carotid Arteries (Review)

Melnikova E.A., Avdeeva I.V., Oleynikov V.E.
Key words: echotracking; arterial stiffness; carotid arteries; atherosclerosis.
2016, volume 8, issue 2, page 119.

Full text

html pdf
3241
2979

The problem of searching and large-scale implementation of early diagnostic techniques of cardiovascular diseases at the stage of preclinical failure is still relevant. Novel methods for vessel stiffness assessment to stratify cardiovascular risk and determine the aim of treatment intervention are certain to provoke interest.

The review considers the modern aspects of local stiffness of an arterial wall, as well as presents comparative data on ultrasound capabilities when using a standard B-mode and a new technique: echotracking. Software echotracking applications (QIMT and QAS) are described. We analyzed the parameters characterizing local rigidity. Obtaining measurement data minimally dependent on a researcher attitude was found to be an evident advantage of echotracking. The paper gives the guide values of a norm for the parameters under study in different age subgroups, and demonstrates diagnostic and prognostic value of the obtained parameters and their dynamics during the drug therapy.

  1. National guidelines on cardiovascular prevention. Kardiovaskulyarnaya terapiya i profilaktika 2011; 10(6): Suppl 2.
  2. Natsional’nye klinicheskie rekomendatsii [National clinical guidelines]. Pod red. Oganova R.G. [Oganov R.G. (editor)]. Moscow: Silitseya-Poligraf; 2010; 592 p.
  3. Diagnostics and correction of lipid metabolism disorders for prevention and treatment of atherosclerosis. Russian recommendation, version V. Ateroskleroz i dislipidemii 2012; 4(9): 5–45.
  4. Van Bortel L.M., Laurent S., Boutouyrie P., Chowienczyk P., Cruickshank J.K., De Backer T., Filipovsky J., Huybrechts S., Mattace-Raso F.U., Protogerou A.D., Schillaci G., Segers P., Vermeersch S., Weber T.; Artery Society; European Society of Hypertension Working Group on Vascular Structure and Function; European Network for Noninvasive Investigation of Large Arteries. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens 2012; 30(3): 445–448, http://dx.doi.org/10.1097/HJH.0b013e32834fa8b0.
  5. Milyagin V.A., Komissarov V.B. Modern methods of evaluation of vascular stiffness. Arterial’naya gipertenziya 2010; 2(16): 134–143.
  6. Kobalava Zh.D., Kotovskaya Yu.V., Moiseev V.S. Arterial’naya gipertoniya. Klyuchi k diagnostike i lecheniyu [Arterial hypertension. The keys to diagnosis and treatment]. Moscow: GEOTAR-Media 2009; 864 p.
  7. Laurent S., Cockcroft J., Van Bortel L., Boutouyrie P., Giannattasio C., Hayoz D., Pannier B., Vlachopoulos C., Wilkinson I., Struijker-Boudier H. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 2006; 27(21): 2588–2605, http://dx.doi.org/10.1093/eurheartj/ehl254.
  8. Oleynikov V.E., Matrosova I.B., Gusakovskaya L.I., Sergatskaya N.V. Role of the determination of aortic pressure and rigidity aortic in patients with cardiovascular diseases. Terapevticheskiy arkhiv 2014; 86(4): 91–95.
  9. Krevchik V.D., Oleynikov V.E., Matrosova I.B., Sergatskaya N.V., Gusakovskaya L.I. Hemodynamic effects of direct and reflected pulse waves’s interaction. Meditsinskaya fizika 2012; 2: 91–96.
  10. Pozdnyakov Yu.M., Volkov V.S. Ambulatornoe lechenie osnovnykh zabolevaniy vnutrennikh organov [Outpatient treatment of major diseases of internal organs]. Moscow; 2008; 322 p.
  11. Aronov D.M., Lupanov V.P. Some aspects of the pathogenesis of atherosclerosis. Ateroskleroz i dislipidemii 2011; 1: 46–58.
  12. Gurevich V.S. Modern views on the pathogenesis of atherosclerosis. Bolezni serdtsa i sosudov 2006; 4: 4–7.
  13. Oikawa M., Ota H., Takaya N., Miller Z., Hatsukami T.S., Yuan C. Carotid magnetic resonance imaging. A window to study atherosclerosis and identify high-risk plaques. Circ J 2009; 73(10): 1765–1773, http://dx.doi.org/10.1253/circj.cj-09-0617.
  14. Celermajer D.S., Sorensen K.E., Gooch V.M., Spiegelhalter D.J., Miller O.I., Sullivan I.D., Lloyd J.K., Deanfield J.E. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 1992; 340(8828): 1111–1115, http://dx.doi.org/10.1016/0140-6736(92)93147-f.
  15. Nedogoda S.V., Chalyabi T.A. Arterial stiffness and pulse wave velocity: new risk factors for cardiovascular disease and targets for pharmacotherapy. Bolezni serdtsa i sosudov 2006; 4: 21–32.
  16. Reneman R.S., Meinders J.M., Hoeks A.P.G. Non-invasive ultrasound in arterial wall dynamics in humans: what have we learned and what remans to be solved. Eur Heart J 2005; 26(10): 960–966, http://dx.doi.org/10.1093/eurheartj/ehi177.
  17. Lelyuk V.G., Lelyuk S.E. Osnovy klinicheskoy interpretatsii dannykh ul’trazvukovykh angiologicheskikh issledovaniy [Basics of clinical data interpretation at ultrasound angiological research]. Moscow; 2005.
  18. Lelyuk V.G., Lelyuk S.E. Printsipy ul’trazvukovoy diagnostiki porazheniy sosudistoy sistemy [Principles of diagnostic ultrasound of lesions of the vascular system]. Moscow; 2002.
  19. Laurent S., Boutouyrie P., Lacolley P. Structural and genetic bases of arterial stiffness. Hypertension 2005; 45(6): 1050–1055, http://dx.doi.org/10.1161/01.HYP.0000164580.39991.3d.
  20. Mattace-Raso F.U., van der Cammen T.J., Hofman A., van Popele N.M., Bos M.L., Schalekamp M.A., Asmar R., Reneman R.S., Hoeks A.P., Breteler M.M., Witteman J.C. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation 2006; 113(5): 657–663, http://dx.doi.org/10.1161/CIRCULATIONAHA.105.555235.
  21. Van Bortel L.M., Balkestein E.J., van der Heijden-Spek J.J., Vanmolkot F.H., Staessen J.A., Kragten J.A., Vredeveld J.W., Safar M.E., Struijker Boudier H.A., Hoeks A.P. Non-invasive assessment of local arterial pulse pressure: comparison of applanation tonometry and echo-tracking. J Hypertens 2001; 19(6): 1037–1044, http://dx.doi.org/10.1097/00004872-200106000-00007.
  22. Rogoza A.N., Balakhonova T.V., Chikhladze N.M., Pogorelova O.A., Moiseeva N.M., Sivakova O.A. Sovremennye metody otsenki sostoyaniya sosudov u bol’nykh arterial’noy gipertoniey [Modern methods of evaluation of the state of blood vessels in patients with arterial hypertension]. Moscow; 2008.
  23. Eriksson A., Greiff E., Loupas T., Persson M., Pesque P. Arterial pulse wave velocity with tissue Doppler imaging. Ultrasound Med Biol 2002; 28(5): 571–580, http://dx.doi.org/10.1016/s0301-5629(02)00495-7.
  24. Carerj S., Nipote C., Zimbalatti C., Zito C., Sutera Sardo L., Dattilo G., Oreto G., Arrigo F. 388 Normal vascular aging evaluated by a new tool: e-tracking. Eur J Echocardiogr 2006; 7(Suppl 1): S49, http://dx.doi.org/10.1016/s1525-2167(06)60178-9.
  25. Harada A., Okada T., Niki K., Chang D., Sugawara M. On-line non-invasive one-point measurements of pulse wave velocity. Heart Vessels 2002; 17(2): 61–68, http://dx.doi.org/10.1007/s003800200045.
  26. Touboul P.-J., Hennerici M.G., Meairs S., Adams H., Amarenco P., Bornstein N., Csiba L., Desvarieux M., Ebrahim S., Fatar M., Hernandez Hernandez R., Jaff M., Kownator S., Prati P., Rundek T., Sitzer M., Schminke U., Tardif J.-C., Taylor A., Vicaut E., Woo K.S., Zannad F., Zureik M. Mannheim carotid intima-media thickness consensus (2004–2006). Cerebrovasc Dis 2007; 23: 75–80, http://dx.doi.org/10.1159/000097034.
  27. Riley W.A., Evans G.W., Sharrett A.R., Burke G.L., Barnes R.W. Variation of common carotid artery elasticity with intimal-medial thickness: the ARIC Study. Ultrasound Med Biol 1997; 23(2): 157–164, http://dx.doi.org/10.1016/s0301-5629(96)00211-6.
  28. Yang E.Y., Chambless L., Sharrett A.R., Virani S.S., Liu X., Tang Z., Boerwinkle E., Ballantyne C.M., Nambi V. Carotid arterial wall characteristics are associated with incident ischemic stroke but not coronary heart disease in the Atherosclerosis Risk in Communities (ARIC) Study. Stroke 2012; 43(1): 103–108, http://dx.doi.org/10.1161/STROKEAHA.111.626200.
  29. Sidorenko G.I., Frolov A.V., Vorob’ev A.P., Mel’nikova O.P., Zolotukhina S.F. Skorost’ pul’sovoy volny kak klyuch k otsenke disfunktsii endoteliya. V kn.: Diagnostika i lechenie narusheniy regulyatsii serdechno-sosudistoy sistemy [Pulse wave velocity as a key to the assessment of endothelial dysfunction. In: Diagnosis and treatment of disorders of the cardiovascular system regulation]. Moscow; 2008; p. 99–106.
  30. Orlova Ya.A., Ageev F.T. Arterial stiffness as an integral indicator of cardiovascular risk: physiology, methods of assessment and medical correction. Serdtse 2006; 5(2): 65–69.
  31. Lunder M., Janic M., Kejzar N., Sabovic M. Associations among different functional and structural arterial wall properties and their relations to traditional cardiovascular risk factors in healthy subjects: a cross-sectional study. BMC Cardiovasc Disord 2012; 12: 29, http://dx.doi.org/10.1186/1471-2261-12-29.
  32. Bennett M.J., McLaughlin S., Anderson T., McDicken W.N. Error analysis of ultrasonic tissue Doppler velocity estimation techniques for quantification of velocity and strain. Ultrasound Med Biol 2007; 33(1): 74–81, http://dx.doi.org/10.1016/j.ultrasmedbio.2006.07.040.
  33. Meinders J.M., Brands P.J., Willigers J.M., Kornet L., Hoeks A.P. Assessment of the spatial homogeneity of artery dimension parameters with high frame rate 2-D B-mode. Ultrasound Med Biol 2001; 27(6): 785–794, http://dx.doi.org/10.1016/s0301-5629(01)00351-9.
  34. Milyagin V.A., Milyagina I.V., Grekova M.V. The new automated method for determining the speed of the pulse wave propagation. Funktsional’naya diagnostika 2004; 1: 33–39.
  35. Jatoi N.A., Mahmud A., Bennett K., Feely J. Assessment of arterial stiffness in hypertension: comparison of oscillometric (Arteriograph), piezoelectronic (Complior) and tonometric (SphygmoCor) techniques. J Hypertens 2009; 27(11): 2186–2191, http://dx.doi.org/10.1097/hjh.0b013e32833057e8.
  36. Lelyuk V.G., Lelyuk S.E. Ul’trazvukovaya angiologiya [Ultrasonic angiology]. Moscow; 2003; 336 p.
  37. Laurent S., Katsahian S., Fassot C., Tropeano A.-I., Gautier I., Laloux B., Boutouyrie P. Aortic stiffness is an independent predictor of fatal stroke in essential hypertension. Stroke 2003; 34(5): 1203–1206, http://dx.doi.org/10.1161/01.STR.0000065428.03209.64.
  38. Malshi E., Morizzo C., Florescu M., Kozakova M., Vinereanu D., Palombo C. P.054 Local arterial wave speed at carotid artery level is representative of carotido-femoral pulse wave velocity and aortic stiffness: evidence by a new echo-tracking approach. Artery Research 2006; 1(Suppl 1): S40, http://dx.doi.org/10.1016/s1872-9312(07)70077-7.
  39. Wilkinson I.B., Prasad K., Hall I.R., Thomas A., MacCallum H., Webb D.J., Frenneaux M.P., Cockcroft J.R. Increased central pulse pressure and augmentation index in subjects with hypercholesterolemia. J Am Coll Cardiol 2002; 39(6): 1005–1011, http://dx.doi.org/10.1016/s0735-1097(02)01723-0.
  40. Zieman S.J., Melenovsky V., Kass D.A. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol 2005; 25(5): 932–943, http://dx.doi.org/10.1161/01.atv.0000160548.78317.29.
  41. Homma S., Hirose N., Ishida H., Ishii T., Araki G. Carotid plaque and intima-media thickness assessed by B-mode ultrasonography in subjects ranging from young adults to centenarians. Stroke 2001; 32(4): 830–501, http://dx.doi.org/10.1161/01.str.32.4.830.
  42. Moiseeva N.M., Ponomarev Yu.A., Sergeeva M.V., Rogoza A.N. Evaluation of main arteries rigidity indices according to the data of bifunctional 24-hour BP and ECG monitoring with the BPLab device. Arterial’naya gipertenziya 2007; 13(1): 34–38.
  43. Meinders J.M., Kornet L., Brands P.J., Hoeks A.P. Assessment of local pulse wave velocity in arteries using 2D distension waveforms. Ultrason Imageing 2001; 23(4): 199–215, http://dx.doi.org/10.1177/016173460102300401.
  44. Riley W.A., Barnes R.W., Evans G.W., Burke G.L. Ultrasonic measurement of the elastic modulus of the common carotid artery. The Atherosclerosis Risk in Communities (ARIC) Study. Stroke 1992; 23(7): 952–956, http://dx.doi.org/10.1161/01.STR.23.7.952.
  45. Vriz O., Driussi C., La Carrubba S., Di Bello V., Zito C., Carerj S., Antonini-Canterin F. Comparison of sequentially measured Aloka echo-tracking one-point pulse wave velocity with SphygmoCor carotid-femoral pulse wave velocity. SAGE Open Med 2013; 1: 2050312113507563, http://dx.doi.org/10.1177/2050312113507563.
  46. Magda S.L., Ciobanu A.O., Florescu M., Vinereanu D. Comparative reproducibility of the noninvasive ultrasound methods for the assessment of vascular function. Heart Vessels 2013; 28(2): 143–150, http://dx.doi.org/10.1007/s00380-011-0225-2.
  47. Arterial elasticity in healthy Chinese. Chinese Journal of Ultrasonography 2008; 17(7): 571–575.
  48. Zhang P., Guo R., Li Z., Xiao D., Ma L., Huang P., Wang C. Effect of Smoking on common carotid artery wall elasticity evaluated by echo tracking technique. Ultrasound Med Biol 2014; 40(3): 643–649, http://dx.doi.org/10.1016/j.ultrasmedbio.2013.10.009.
  49. Ferraioli G., Tinelli C., Maggi P., Gervasoni C/, Grima P., Viskovic K., Carerj S., Filice G., Filice C. Arterial stiffness evaluation in HIV-infected: a multicenter matched control study. AJR Am J Roentgenol 2011; 197(5): 1258–1262, http://www.ajronline.org/doi/abs/10.2214/AJR.11.6712.
  50. Sudano I., Spieker L.E., Noll G., Corti R., Weber R. Cardiovascular disease in HIV infection. Am Heart J 2006; 151(6): 1147–1155, http://dx.doi.org/10.1016/j.ahj.2005.07.030.
  51. Yang S., Wang D., Zhang H., He W., Chen B. Echo-tracking technology assessment of carotid artery stiffness in patients with coronary slow flow. Ultrasound Med Biol 2015; 41(1): 72–76, http://dx.doi.org/10.1016/j.ultrasmedbio.2014.08.015.
  52. Sutton-Tyrrell K., Najjar S.S., Boudreau R.M., Venkitachalam L., Kupelian V., Simonsick E.M., Havlik R., Lakatta E.G., Spurgeon H., Kritchevsky S., Pahor M., Bauer D., Newman A.; for the Health ABC Study. Elevated aortic pulse wave velocity, a marker of arterial stiffness, predicts cardiovascular events in well-functioning older adults. Circulation 2005; 111(25): 3384–3390, http://dx.doi.org/10.1161/circulationaha.104.483628.
  53. Arnett D.K., Chambless L.E., Kim H., Evans G.W., Riley W. Variability in ultrasonic measurements of arterial stiffness in the atherosclerosis risk in communities study. Ultrasound Med Biol 1999; 25(2): 175–180, http://dx.doi.org/10.1016/s0301-5629(98)00165-3.
  54. Hollander M., Hak A.E., Koudstaal P.J., Bots M.L., Grobbee D.E., Hofman A., Witteman J.C., Breteler M.M. Comparison between measures of atherosclerosis and risk of stroke. The Rotterdam Study. Stroke 2003; 34(10): 2367–2372, http://dx.doi.org/10.1161/01.str.0000091393.32060.0e.
  55. Dijk J.M., Algra A., van der Graaf Y., Grobbee D.E., Bots M.L. Carotid stiffness and the risk of new vascular events in patients with manifest cardiovascular disease. The SMART study. Eur Heart J 2005; 26(12): 1213–1220, http://dx.doi.org/10.1093/eurheartj/ehi254.
  56. Henry R.M., Kostense P.J., Spijkerman A.M., Dekker J.M., Nijpels G., Heine R.J., Kamp O., Westerhof N., Bouter L.M., Stehouwer C.D. Arterial stiffness increases with deteriorating glucose tolerance status: the Hoorn Study. Circulation 2003; 107(16): 2089–2095, http://dx.doi.org/10.1161/01.CIR.0000065222.34933.FC.
  57. Schram M.T., Schalkwijk C.G., Bootsma A.H., Fuller J.H., Chaturvedi N., Stehouwer C.D.; on behalf of the EURODIAB Prospective Complications Study Group. Advanced glycation end products are associated with pulse pressure in type 1 diabetes. The EURODIAB Prospective Complications Study. Hypertension 2005; 46(1): 232–237, http://dx.doi.org/10.1161/01.HYP.0000164574.60279.ba.
  58. Gurfinkel Yu.I., Katse N.V., Parfenova L.M., Ivanova I.Yu., Orlov V.A. Pulse wave velocity and endothelial function comparison in healthy people and cardiovascular patients. Rossiyskiy kardiologicheskiy zhurnal 2009; 2(76): 38–43.
  59. Ilyukhin O.V., Lopatin Yu.M. Pulse wave velocity and elastic features of magistral arteries: factors, affecting their mechanical properties and possibilities of their diagnostic evaluation. Vestnik Volgogradskogo gosudarstvennogo meditsinskogo universiteta 2006; 1(17): 3–9.
  60. Milyagin V.A., Filichkin D.E., Shpynev K.V., Shpyneva Z.M., Milyagina I.V. Contour analysis of central and peripheral pulse wave in healthy people and in hypertensive patients. Arterial’naya gipertenziya 2009; 15(1): 78–85.
  61. London G.M., Marchais S.J., Guerin A.P., Metivier F., Adda H. Arterial structure and function in end-stage renal failure. Nephrol Dial Transplant 2002; 17(10): 1713–1724, http://dx.doi.org/10.1093/ndt/17.10.1713.
  62. Tozawa M., Iseki K., Iseki C., Takishita S. Pulse pressure and risk of total mortality and cardiovascular events in patients on chronic hemodialysis. Kid Int 2002; 61(2): 717–726, http://dx.doi.org/10.1046/j.1523-1755.2002.00173.x.
  63. Seyrek N., Balal M., Karayaylali I., Paydaş S., Aikimbaev K., Cetiner S., Seydaoglu G. Which parameter is more influential on the development of arteriosclerosis in hemodialysis patients? Renal Fail 2003; 25(6): 1011–1018, http://dx.doi.org/10.1081/jdi-120026036.
  64. Mourad J.J., Pannier B., Blacher J., Rudnichi A., Benetos A., London G.M., Safar M.E. Creatinine clearance, pulse wave velocity, carotid compliance and essential hypertension. Kidney Int 2001; 59(5): 1834–1841, http://dx.doi.org/10.1046/j.1523-1755.2001.0590051834.x.
  65. Covic A., Gusbeth-Tatomir P., Goldsmith D.J.A. Arterial stiffness in renal patient: an update. Am J Kidney Dis 2005; 45(6): 965–977, http://dx.doi.org/10.1053/j.ajkd.2005.02.026.
  66. Barenbrock M., Kosch M., Jöster E., Kisters K., Rahn K.H., Hausberg M. Reduced arterial distensibility is a predictor of cardiovascular disease in patients after renal transplantation. J Hypertens 2002; 20(1): 79–84, http://dx.doi.org/10.1097/00004872-200201000-00012.
  67. Pannier B., Guérin A.P., Marchais S.J., Safar M.E., London G.M. Stiffness of capacitive and conduit arteries: prognostic significance for end-stage renal disease patients. Hypertension 2005; 45(4): 592–596, http://dx.doi.org/10.1161/01.hyp.0000159190.71253.c3.
  68. Niki K., Sugawara M., Chang D., Harada A., Okada T., Sakai R., Uchida K., Tanaka R., Mumford C.E. A new noninvasive measurement system for wave intensity: evaluation of carotid arterial wave intensity and reproducibility. Heart Vessels 2002; 17(1): 12–21, http://dx.doi.org/10.1007/s003800200037.
  69. Yusuf S., Hawken S., Ounpuu S., Dans T., Avezum A., Lanas F., McQueen M., Budaj A., Pais P., Varigos J., Lisheng L.; on behalf of the INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364(9838): 937–952, http://dx.doi.org/10.1016/s0140-6736(04)17018-9.
  70. ESC/EAS Guidelines for the management of dyslipidaemias. Ateroskleroz i dislipidemii 2011; 4: 5–7.
  71. Kukharchuk V.V. Arterial’naya gipertoniya, narusheniya lipidnogo obmena i ateroskleroz. V kn.: Rukovodstvo po arterial’noy gipertonii [Arterial hypertension, lipid disorders and atherosclerosis. In: Guide to an arterial hypertension]. Pod red. Chazova E.I., Chazovoy I.E. [Chazov E.I., Chazova I.E. (editors)]. Moscow: Media Medika; 2005; p. 289–299.
  72. Brunner H., Cockcroft J.R., Deanfield J., Donald A., Ferrannini E., Halcox J., Kiowski W., Lüscher T.F., Mancia G., Natali A., Oliver J.J., Pessina A.C., Rizzoni D., Rossi G.P., Salvetti A., Spieker L.E., Taddei S., Webb D.J. Endothelial function and dysfunction. Part II: Association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension. J Hypertens 2005; 23(2): 233–246, http://dx.doi.org/10.1097/00004872-200502000-00001.
  73. Waddell T.K., Dart A.M., Medley T.L., Cameron J.D., Kingwell B.A. Carotid pressure is a better predictor of coronary artery disease severity than brachial pressure. Hypertension 2001; 38(4): 927–931, http://dx.doi.org/10.1161/hy1001.096107.
  74. DeLoach S.S., Townsend R.R. Vascular stiffness: its measurements and significance for epidemiologic and outcome studies. Clin J Am Soc Nephrol 2008; 3(1): 184–192, http://dx.doi.org/10.2215/cjn.03340807.
  75. Paini A., Boutouyrie P., Calvet D., Tropeano A.-I., Laloux B., Laurent S. Carotid and aortic stiffness: determinants of discrepancies. Hypertension 2006; 47(3): 371–376, http://dx.doi.org/10.1161/01.hyp.0000202052.25238.68.
  76. Hughes A.D., Sinclair A.M., Geroulakos G., Mayet J., Mackay J., Shahi M., Thom S., Nicolaides A., Sever P.S. Structural changes in the heart and carotid arteries associated with hypertension in humans. J Human Hypertens 1993; 7(4): 395–397.
  77. Jiang B., Liu B., McNeill K.L., Chowienczyk P.J. Measurement of pulse wave velocity using pulse wave Doppler ultrasound: comparison with arterial tonometry. Ultrasound Med Biol 2008; 34(3): 509–512, http://dx.doi.org/10.1016/j.ultrasmedbio.2007.09.008.
  78. Simons P.C., Algra A., Bots M.L., Grobbee D.E., van der Graaf Y. Common carotid intima-media thickness and arterial stiffness. Indicators of cardiovascular risk in high-risk patients. The SMART Study (Second Manifestations of ARTerial disease). Circulation 1999; 100(9): 951–957, http://dx.doi.org/10.1161/01.cir.100.9.951.
  79. Boutouyrie P., Pannier B. Measurement of arterial stiffness. In: Central aortic blood pressure. Laurent S., Cockroft J. (editors). France; 2008; p. 41–47.
  80. Kelly R., Hayward C., Ganis J., Daley J., Avolio A., O’Rourke M. Noninvasive registration of the arterial pressure pulse waveform using high-fidelity applanation tonometry. J Vasc Med Biol 1989; 1: 142–149.
  81. Ahuja K.D., Robertson I.K., Ball M.J. Acute effects of food on postprandial blood pressure and measures of arterial stiffness in healthy humans. Am J Clin Nutr 2009; 90(2): 298–303, http://dx.doi.org/10.3945/ajcn.2009.27771.
  82. Cheng K.S., Baker C.R., Hamilton G., Hoeks A.P., Seifalian A.M. Arterial elastic properties and cardiovascular risk/event. Eur J Vasc Endovasc Surg 2002; 24(5): 383–397, http://dx.doi.org/10.1053/ejvs.2002.1756.
  83. Gamble G., Zorn J., Sanders G., MacMahon S., Sharpe N. Estimation of arterial stiffness, compliance, and distensibility from M-mode ultrasound measurements of the common carotid artery. Stroke 1994; 25(1): 11–16, http://dx.doi.org/10.1161/01.str.25.1.11.
  84. Beaussier H., Masson I., Collin C., Bozec E., Laloux B., Calvet D., Zidi M., Boutouyrie P., Laurent S. Carotid plaque, arterial stiffness gradient, and remodeling in hypertension. Hypertension 2008; 52(4): 729–736, http://dx.doi.org/10.1161/hypertensionaha.108.115972.
  85. Beaussier H., Naggara O., Calvet D., Joannides ., Guegan-Massardier E., Gerardin E., Iacob M., Laloux B., Bozec E., Bellien J., Touze E., Masson I., Thuillez C., Oppenheim C., Boutouyrie P., Laurent S. Mechanical and structural characteristics of carotid plaques by combined analysis with echotracking system and MR imaging. JACC Cardiovasc Imaging 2011; 4(5): 468–477, http://dx.doi.org/10.1016/j.jcmg.2011.01.017.
  86. Martynov A.I., Sinitsin V.E., Ternovoy S.K., Pustovitova T.S., Ostroumova O.D., Sharkova N.E., Gedgafova S.Yu. Changes of distensibility of the aorta in elderly patients during long-term therapy with various classes of hypotensive drugs. Kardiologiya 2002; 42(5): 19–22.
  87. Blacher J., Pannier B., Guerin A.P., Marchais S.J., Safar M.E., London G.M. Third workshop on structure and function of large arteries: part III. Carotid arterial stiffness as a predictor of cardiovascular and all-cause mortality in end-stage renal disease. Hypertension 1998; 32(3): 570–574, http://dx.doi.org/10.1161/01.hyp.32.3.570.
  88. Boutouyrie P., Laurent S., Benetos A., Girerd X.J., Hoeks A.P.G., Safar M.E. Opposing effects of ageing on distal and proximal large arteries in hypertensives. J Hypertens Suppl 1992; 10(6): S87–S91, http://dx.doi.org/10.1097/00004872-199208001-00023.
  89. Williams B., Lacy P.S., Thom S.M., Cruickshank K., Stanton A., Collier D., Hughes A.D., Thurston H., O’Rourke M.; CAFE Investigators; Anglo-Scandinavian Cardiac Outcomes Trial Investigators; CAFE Steering Committee and Writing Committee. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation 2006; 113(9): 1213–1225, http://dx.doi.org/10.1161/CIRCULATIONAHA.105.595496.
  90. Cruickshank K., Riste L., Anderson S.G., Wright J.S., Dunn G., Gosling R.G. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function? Circulation 2002; 106(16): 2085–2090, http://dx.doi.org/10.1161/01.cir.0000033824.02722.f7.
  91. Millasseau C., Kelly R., Ritter J., Chowienczyk P.J. The vascular impact of aging and vasoactive drugs: comparison of two digital volume pulse measurement. Am J Hypertens 2003; 16(6): 467–472, http://dx.doi.org/10.1016/s0895-7061(03)00569-7.
  92. Lopatin Yu.M., Ilyukhin O.V., Ilyukhina M.V., Ivanenko V.V. Arterial elasticity and pulse wave velocity in patients with chronic heart failure of various etiologies. Zhurnal serdechnaya nedostatochnost’ 2004; 5(4): 130–131.
  93. Tripoten’ M.I., Balakhonova T.V., Rogoza A.N. Comparative assessment of M-mode and Echo-Tracking technology in determination of common carotid arteries stiffness. Ul’trazvukovaya i funktsional’naya diagnostika 2011; 6: 50–56.
  94. Milyagina I.V., Milyagin V.A., Pozdnyakov Yu.M., Leksina Yu.N., Kopteva V.V. Cardio-ankle vascular index — a new cardiovascular risk predictor. Kardiovaskulyarnaya terapiya i profilaktika 2008; 7(7): 22–26.
  95. Matrosova I.B., Melnikova E.A., Oleynikov V.E. Effects of olmesartan on local and regional rigidity of arteries in ischemic heart disease. Kardiovaskulyarnaya terapiya i profilaktika 2014; 13(3): 41–46.
  96. Wilkinson I.B. The pharmacodynamics of central blood pressure. In: Central aortic blood pressure. Laurent S., Cockroft J. (editors). France; 2008; p. 69–74.
  97. Chow B., Rabkin S.W. Brachial-ankle pulse wave velocity is the only index of arterial stiffness that correlates with a mitral valve indices of diastolic dysfunction, but no index correlates with left atrial size. Cardiol Res Pract 2013; 2013: 986847, http://dx.doi.org/10.1155/2013/986847.
  98. Kampus P., Serg M., Kals J., Zagura M., Muda P., Karu K., Zilmer M., Eha J. Differential effects of nebivolol and metoprolol on central aortic pressure and left ventricular wall thickness. Hypertension 2011; 57(6): 1122–1128, http://dx.doi.org/10.1161/hypertensionaha.110.155507.
  99. Leone N., Ducimetière P., Gariépy J., Courbon D., Tzourio C., Dartigues J.-F., Ritchie K., Alpérovitch A., Amouyel P., Safar M.E., Zureik M. Distension of the carotid artery and risk of coronary events: the three-city study. Arterioscler Thromb Vasc Biol 2008; 28(7): 1392–1397, http://dx.doi.org/10.1161/atvbaha.108.164582.
Melnikova E.A., Avdeeva I.V., Oleynikov V.E. Echotrecking Is a Novel Technology to Assess Structural and Functional Properties of Carotid Arteries (Review). Sovremennye tehnologii v medicine 2016; 8(2): 119, https://doi.org/10.17691/stm2016.8.2.16


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank