Today: Mar 29, 2024
RU / EN
Last update: Mar 1, 2024
Prerequisites for Developing New Generation  Cryosurgical Devices (Review)

Prerequisites for Developing New Generation Cryosurgical Devices (Review)

Shakurov А.V., Pushkarev А.V., Pushkarev V.А., Tsiganov D.I.
Key words: cryosurgical equipment; cryomedicine; cryotechnique; cryotherapy; cryosurgical devices.
2017, volume 9, issue 2, page 178.

Full text

html pdf
3091
2410

The study represents the implementation areas, key advantages and application problems of a cryotechnique in recent times, as well as the classification, the main characteristics and disadvantages of the existing cryosurgical units. The review considers the prerequisites for developing new generation cryosurgical units. Among them there were distinguished five main research lines. The first line is the development of a high-precision cryotherapy dosing technique. The second line is related to the formation of prediction and result control techniques of establishing a predetermined cryonecrosis area, since practice requires a detailed calculation of a procedure to choose the modes of cryosurgical devices, which meet the dosing conditions. The third line is the study of thermal properties of biotissues in a wide temperature range (including pathologically altered tissues), as well as their modification to improve cryotherapy quality. The fourth line is the improvement of control cryotherapy methods. Work automation of the elements of cryosurgical devices and the diagnostic support on a real-time basis are necessary. It enables to provide a surgeon with a complete presentation. The fifth research line is connected with the creation of cryosurgical robotic technologies. Robot-assisted medicine has widespread application, it becoming more technically and medically advanced. Robotic technologies open great challenges for future development of the entire branches of clinical medicine including cryosurgery.

The problem of insufficient opportunities of cryosurgical units to meet the medical and technical requirements is found to be related to the lack of control procedure options rather than the imperfection of equipment technical characteristics. To achieve a high efficiency of cryotherapy, the problem is to be solved comprehensively. The development of medical imaging technologies, computational power and equipment maintenance of the technique can make it possible to extend significantly the functionality and application area of cryosurgical apparatuses so that in the future to increase the competitive capability of a cryotechnique.

  1. Tsyganov D.I. Kriomeditsina: protsessy i apparaty [Cryomedicine: processes and devices]. Moscow: SAYNS-PRESS; 2011; 304 p.
  2. Xu K., Korpan N.N., Niu L. Modern cryosurgery for cancer. World Scientific Publishing; 2012, https://doi.org/10.1142/8004.
  3. Shafranov V.V., Tsyganov D.I., Polyaev Yu.A. Capabilities of сryosurgery. Annaly khirurgii 1996; (4): 4.
  4. Tsyganov D.I. Teoreticheskie i eksperimental’nye osnovy sozdaniya kriokhirurgicheskoy apparatury i meditsinskikh tekhnologiy ee primeneniya. Dis. dokt. … tekh. nauk [Theoretical and experimental fundamentals of designing cryosurgical equipment, and medical technologies of its application. DSc Thesis]. Moscow; 1995.
  5. Korpan N.N. Modern cryosurgery: present and future. In: 16th World Congress of the ISC. October 29–November 2, 2011; Hofburg, Vienna, Austria. Korpan N.N., Sumida S. (editors). Vienna: The University Publisher Facultas; 2011; p. 29–30.
  6. Kriokhirurgicheskie operatsii pri zabolevaniyakh pecheni i podzheludochnoy zhelezy [Cryosurgical operations in hepatic and pancreatic diseases]. Pod red. Al’perovicha B.I. [Al’perovich B.I. (editor)]. Moscow: GEOTAR-Media; 2015; 239 p.
  7. Belyaev A.M., Prokhorov G.G. Cryogenic technologies in oncology. Voprosy onkologii 2015; 61(3): 317–322.
  8. Wojciech R. The importance of cryosurgery in gynecological practice. Ginekol Pol 2011; 82(8): 618–622.
  9. Budrik V.V. Osnovy krioterapii, kriokhirurgii i kriokonservatsii [Cryotherapy, cryosurgery and cryoconservation fundamentals]. Moscow: Lika; 2014; 190 p.
  10. Tumor ablation. Principles and practice. vanSonnenberg E., McMullen W.N., Solbiati L., Livraghi T., Müeller P.R., Silverman S.G. (editors). Springer-Verlag New York; 2005, https://doi.org/10.1007/0-387-28674-8.
  11. Handbook of urologic cryoablation. Rukstalis D., Katz A. (editors). CRC Press; 2007, https://doi.org/10.3109/9780203029930-1.
  12. Tanaka D., Shimada K., Rabin Y. Two-phase computerized planning of cryosurgery using bubble-packing and force-field analogy. J Biomech Eng 2006; 128 (1): 49–58, https://doi.org/10.1115/1.2136166.
  13. Butorina A.V., Polyaev Yu.A., Vozdvizhenskiy I.S., Usanova G.A., Arkharov A.M., Matveyev V.A., Tsyganov D.I., Antonov A.N., Zherdev A.A. Cryo-microwave frequency technologies in surgery. Khimicheskoe i neftegazovoe mashinostroenie 2008; 1: 24–25.
  14. Butorina A., Arkharov A., Matveev V. Dreams and reality of cryogenic technology in surgery. In: The 12th CRYOGENICS 2012. IIR International Conference. September 11–14, 2012; Dresden, Germany. Czech Republic; 2012; p. 467–474.
  15. Bobrikhin A.F., Gudkov A.G., Tsyganov D.I., Shafranov V.V. Cryodestruction of pathological lesions. Mashinostroitel’ 2015; 1: 39–45.
  16. Shafranov V.V., Tsyganov D.I., Romanov A.V., Borkhunova E.N., Taganov A.V., Kobyatskiy A.V., Pligin V.A., Geras’kin A.V., Polyaev Yu.P., Konstantinov K.V., Fomin A.A., Nechaeva M.V. Cryosurgery in children. Some theoretical and practical aspects. Detskaya khirurgiya 1999; 3: 35–44.
  17. Shafranov V.V., Borhunova E.N., Tsyganov D.I., Torba A.I., Taganov A.V., Mezhov-Deglin L.P., Kalmykova Z.V., Podshivalova O.A. Modern concept of biological tissues destruction at local cryosurgery. Gumanitarnyy vestnik 2013; 12(14): 8.
  18. Govorov A.V., Vasilyev A.O., Pushkar D.U. Specifics of prostate cryoablation. Biomedical Engineering 2015; 49(1): 54–59, https://doi.org/10.1007/s10527-015-9496-8.
  19. Govorov A.V., Pushkar D.Yu., Ivanov V.Yu. Prostate cryoablation. Onkourologiya 2011; 2: 96–101.
  20. Berglund R.K., Jones J.S. Cryotherapy for prostate cancer. In: Interventional urology. Rastinehad A.R., Siegel D.N., Pinto P.A., Wood B.J. (editors). Springer International Publishing; 2016; p. 165–171, https://doi.org/10.1007/978-3-319-23464-9_13.
  21. Shafranov V.V., Borhunova E.N., Kostylev M.A., Tsyganov D.I., Torba A.M., Taganov A.V., Mezhov-Deglin L.P., Kalmykova Z.V. The mechanism of destruction of biological tissue at a local cryodestruction. Vestnik RAEN 2012; 1: 68–77.
  22. Thaokar C., Rabin Y. Temperature field reconstruction for the application of wireless implantable temperature sensors in cryosurgery. In: ASME 2011 Summer Bioengineering Conference; Parts A and B. ASME International; 2011, https://doi.org/10.1115/sbc2011-53319.
  23. Bobrikhin A.F., Gudkov A.G., Tsyganov D.I., Shafranov V.V. Compact autonomous cryodestructors “KM-01” and “KM-02”. Tekhnologii zhivykh sistem 2012; 9(8): 39–46.
  24. Kondratenko R., Nesterov S., Butorina A. Study of contact methods to cool biological tissue in local surgery. In: The 12th CRYOGENICS 2012. IIR International Conference. September 11–14, 2012; Dresden, Germany. Czech Republic; 2012; p. 146–149.
  25. Makarova O.A., Kuznetsova N.L. The use of liquid nitrogen in the treatment of patients with wound abscess after tracheostomy. Sovremennye tehnologii v medicine 2012; 4: 125–127.
  26. Meditsinskie materialy i implantaty s pamyat’yu formy. T. 9. Poristo-pronitsaemye krioapplikatory iz nikelida titana v meditsine [Medical materials and implants with shape memory. Vol. 9. Porous-permeable cryoapplicators from titanium nickelide in medicine]. Pod red. Gyuntera V.E. [Gyunter V.E. (editor)]. Tomsk: MITs; 2010; 306 p.
  27. Mashiny nizkotemperaturnoy tekhniki. Kriogennye mashiny i instrumenty [Low-temperature equipment. Cryogenic refrogerators and instruments]. Pod red. Arkharova A.M., Butkevicha I.K. [Arkharov A.M., Butkevich I.K. (editors)]. Moscow: Izdatel’stvo MGTU im. Baumana; 2015; 536 p.
  28. Kotova T.G. Cryosurgical instruments used for cryoablation of lung tumors. Uspekhi sovremennoy nauki i obrazovaniya 2016; 5(2): 129–132.
  29. Govorov A.V., Vasiliev A.O., Ivanov V.Yu., Kovylina M.V., Prilepskaya E.A., Pushkar D.Yu. Treatment of prostate cancer using cryoablation: a prospective study. Urologiya 2014; 6: 69–74.
  30. Mozer P., Troccaz J., Stoianovici D. Robotics in urology: past, present, and future. In: Atlas of Robotic Urologic Surgery. Humana Press; 2011; p. 3–13, https://doi.org/10.1007/978-1-60761-026-7_1.
  31. Sehrawat A., Shimada K., Rabin Y. Geometric deformation of three-dimensional prostate model with applications to computerized training of cryosurgery. In: ASME 2011 Summer Bioengineering Conference; Parts A and B. ASME International; 2011, p. 751–752, https://doi.org/10.1115/SBC2011-53205.
  32. Chizh N.A., Sandomirskiy B.P. Cryosurgery, overloading and renewal. Klinichna hirurgija 2011; 6: 53–55.
  33. Chua K.J., Chou S.K., Ho J.C. An analytical study on the thermal effects of cryosurgery on selective cell destruction. Journal of Biomechanics 2007; 40(1): 100–116, https://doi.org/10.1016/j.jbiomech.2005.11.005.
  34. Shafranov V.V., Borhunova E.N., Taganov A.V., Torba A.I., Tsyganov D.I., Mazohin V.N., Pismenskova A.V. Theory and mechanism of injury of biological tissues at the local freezing. Rossiyskiy vestnik detskoy khirurgii, anesteziologii i reanimatologii 2011; 1: 124–134.
  35. Erinjeri J.P., Clark T.W.I. Cryoablation: mechanism of action and devices. J Vasc Interv Radiol 2010; 21(8): S187–S191, https://doi.org/10.1016/j.jvir.2009.12.403.
  36. Robilotto A.T., Baust J.M., Van Buskirk R.G., Gage A.A., Baust J.G. Temperature-dependent activation of differential apoptotic pathways during cryoablation in a human prostate cancer model. Prostate Cancer Prostatic Dis 2013; 16(1): 41–49, https://doi.org/10.1038/pcan.2012.48.
  37. Sumida S. Mechanism of tissue injury in cryosurgery. In: 16th World Congress of the ISC. October 29–November 2, 2011; Hofburg, Vienna, Austria. Korpan N.N., Sumida S. (editors). Vienna: University Facultas Publisher; 2011; p. 55–56.
  38. Tsyganov D.I. Teplofizicheskie aspekty kriokhirurgii [Thermal-physical aspects of cryosurgery]. Moscow: RMAPO; 2005; 180 p.
  39. Yang B., Wan R.G., Muldrew K.B., Donnelly B.J. A finite element model for cryosurgery with coupled phase change and thermal stress aspects. Finite Elem Anal Des 2008; 44(5): 288–297, https://doi.org/10.1016/j.finel.2007.11.014.
  40. Ismail M., Ahmed S., Davies J. Prostate Cryotherapy. In: Prostate cancer: a comprehensive perspective. Springer London; 2012; p. 773–786, https://doi.org/10.1007/978-1-4471-2864-9_65.
  41. Vasilyev S.A., Pesnya-Prasolov S.B. Application of the cryosurgical method in neurosurgery. Neyrohirurgiya 2009; 4: 63–70.
  42. Yiu W., Basco M.T., Aruny J.E., Cheng S.W., Sumpio B.E. Cryosurgery: a review. Int J Angiol 2007; 16(1): 1–6, https://doi.org/10.1055/s-0031-1278235.
  43. Rossi M.R., Tanaka D., Shimada K., Rabin Y. An efficient numerical technique for bioheat simulations and its application to computerized cryosurgery planning. Comput Methods Programs Biomed 2007; 85(1): 41–50, https://doi.org/10.1016/j.cmpb.2006.09.014.
  44. Zhao G., Luo D.W., Liu Z.F., Gao D.Y. Comparative study of the cryosurgical processes with two different cryosurgical systems: the endocare cryoprobe system versus the novel combined cryosurgery and hyperthermia system. Latin American Applied Research 2007; 37(3): 215–222.
  45. Rikberg A.B., Es’man S.S., Golubev Yu.V., Sergienko V.P. In vitro test for cryosurgery. Kriobiologiya 1987; 1: 41–46.
  46. Larson T.R., Rrobertson D.W., Corica A., Bostwick D.G. In vivo interstitial temperature mapping of the human prostate during cryosurgery with correlation to histopathologic outcomes. Urology 2000; 55(4): 547–552, https://doi.org/10.1016/s0090-4295(99)00590-7.
  47. Nakatsuka S., Yashiro H., Inoue M., Kuribayashi S., Kawamura M., Izumi Y., Tsukada N., Yamauchi Y., Hashimoto K., Iwata K., Nagasawa T., Lin Y.-S. On freeze-thaw sequence of vital organ of assuming the cryoablation for malignant lung tumors by using cryoprobe as heat source. Cryobiology 2010; 61(3): 317–326, https://doi.org/10.1016/j.cryobiol.2010.10.157.
  48. Govorov A.V., Vasiliev A.O., Kovilina M.V., Prilepskaya E.A., Kovnatskaya G.A., Pushkar D.Yu. Efficacy of cryodestruction depending on the qualitative and quantitative settings of the freezing and thawing. Eksperimental’naya i klinicheskaya urologiya 2015; 1: 24–29.
  49. Dombrovsky L.A., Nenarokomova N.B., Tsiganov D.I., Zeigarnik Y.A. Modeling of repeating freezing of biological tissues and analysis of possible microwave monitoring of local regions of thawing. International Journal of Heat and Mass Transfer 2015; 89: 894–902, https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.117.
  50. le Pivert P.J. Cryosurgery for cancer in the 21st century, the turning point. In: 16th World Congress of the ISC. October 29–November 2, 2011; Hofburg, Vienna, Austria. Korpan N.N., Sumida S. (editors). Vienna: University Facultas Publisher; 2011; p. 49.
  51. Keelan R., Zhang H., Shimada K., Rabin Y. Graphics processing unit-based bioheat simulation to facilitate rapid decision making associated with cryosurgery training. Technol Cancer Res Treat 2016; 15(2): 377–386, https://doi.org/10.1177/1533034615580694.
  52. Sehrawat A., Keelan R., Shimada K., Wilfong D.M., McCormick J.T., Rabin Y. Simulation-based cryosurgery intelligent tutoring system prototype. Technol Cancer Res Treat 2016; 15(2): 396–407, https://doi.org/10.1177/1533034615583187.
  53. Sehrawat A., Shimada K., Rabin Y. Generating prostate models by means of geometric deformation with application to computerized training of cryosurgery. Int J Comput Assist Radiol Surg 2013; 8(2): 301–312, https://doi.org/10.1007/s11548-012-0780-8.
  54. Keelan R., Yamakawa S., Shimada K., Rabin Y. Computerized training of cryosurgery — a system approach. Cryo Letters 2013; 34(4): 324–337.
  55. Keelan R., Shimada K., Rabin Y. Developing a framework for computerized training of cryosurgery based on finite elements analysis. In: ASME 2011 Summer Bioengineering Conference. ASME; 2011; p. 749–750, https://doi.org/10.1115/sbc2011-53192.
  56. Giorgi G., Avalle L., Brignone M., Piana M., Caviglia G. An optimisation approach to multiprobe cryosurgery planning. Comput Methods Biomech Biomed Engin 2013; 16(8): 885–895, https://doi.org/10.1080/10255842.2011.643469.
  57. Vasilyev A.O., Govorov A.V., Pushkarev A.V., Tsiganov D.I., Shakurov A.V. Thermophysical modeling of cryosurgery with the case study of prostate cancer. Tekhnologii zhivykh sistem 2014; 11(4): 47–53.
  58. Deng Z.-S., Liu J. Computerized planning of multi-probe cryosurgical treatment for tumor with complex geometry. In: ASME 2007 International Mechanical Engineering Congress and Exposition. ASME; 2007; p. 97–101, https://doi.org/10.1115/imece2007-43921.
  59. Tanaka D., Shimada K., Rossi M.R., Rabin Y. Towards intra-operative computerized planning of prostate cryosurgery. Int J Med Robot 2007; 3(1): 10–19, https://doi.org/10.1002/rcs.124.
  60. Rossi M.R., Tanaka D., Shimada K., Rabin Y. Computerized planning of prostate cryosurgery using variable cryoprobe insertion depth. Cryobiology 2010; 60(1): 71–79, https://doi.org/10.1016/j.cryobiol.2008.11.008.
  61. Thaokar C., Rossi M.R., Rabin Y. A new method for temperature-field reconstruction during ultrasound-monitored cryosurgery using potential-field analogy. Cryobiology 2016; 72(1): 69–77, https://doi.org/10.1016/j.cryobiol.2015.10.153.
  62. Thaokar C., Rabin Y. Temperature field reconstruction for minimally invasive cryosurgery with application to wireless implantable temperature sensors and/or medical imaging. Cryobiology 2012; 65(3): 270–277, https://doi.org/10.1016/j.cryobiol.2012.08.001.
  63. Thaokar C.V., Rabin Y. Temperature-field reconstruction for the application of prostate cryosurgery. In: 38th Annual Northeast Bioengineering Conference. IEEE; 2012, https://doi.org/10.1109/nebc.2012.6206968.
  64. Kotova Т.G., Kochenov V.I., Tsybusov S.N., Madai D.Y., Gurin А.V. Calculation of effective freezing time in lung cancer cryosurgery based on Godunov simulation. Sovremennye tehnologii v medicine 2016; 8(1): 48–54, https://doi.org/10.17691/stm2016.8.1.07.
  65. Сhua K.J. Computer simulations on multiprobe freezing of irregularly shaped tumors. Comput Biol Med 2011; 41(7): 493–505, https://doi.org/10.1016/j.compbiomed.2011.04.015.
  66. Shah T.T., Arbel U., Foss S., Zachman A., Rodney S., Ahmed H.U., Arya M. Modeling cryotherapy ice ball dimensions and isotherms in a novel gel-based model to determine optimal cryo-needle configurations and settings for potential use in clinical practice. Urology 2016; 91: 234–240, https://doi.org/10.1016/j.urology.2016.02.012.
  67. He Z.-Z., Liu J. An efficient thermal evolution model for cryoablation with arbitrary multi-cryoprobe configuration. Cryobiology 2015; 71(2): 318–328, https://doi.org/10.1016/j.cryobiol.2015.08.006.
  68. Hinshaw J.L., Lee Jr. F.T., Laeseke P.F., Sampson L.A., Brace C. Temperature isotherms during pulmonary cryoablation and their correlation with the zone of ablation. J Vasc Interv Radiol 2010; 21(9): 1424–1428, https://doi.org/10.1016/j.jvir.2010.04.029.
  69. Kudryashov N.A., Shilnikov K.E. Numerical modeling and optimization of the cryosurgery operations. J Comput Appl Math 2015; 290: 259–267, https://doi.org/10.1016/j.cam.2015.05.018.
  70. Morozova N.V., Ponomaryev D.E., Pushkaryev A.V., Tsyganov D.I. Thermophysical modeling application in liver cryosurgery. Rossiyskiy onkologicheskiy zhurnal 2014; 19(4): 37.
  71. Burkov I.A., Pushkarev A.V., Shakurov A.V., Tsyganov D.I. The research of the temperature distribution on the working surface of minimally invasive cryoprobe. Avtomatizatsiya. Sovremennye tekhnologii 2015; 9: 23–25.
  72. Zhao X., Chua K.J. Studying the performance of bifurcate cryoprobes based on shape factor of cryoablative zones. Cryobiology 2014; 68 (3): 309–317, https://doi.org/10.1016/j.cryobiol.2014.04.011.
  73. Okajima J., Komiya A., Maruyama S. 24-gauge ultrafine cryoprobe with diameter of 550 μm and its cooling performance. Cryobiology 2014; 69(3): 411–418, https://doi.org/10.1016/j.cryobiol.2014.09.104.
  74. Hasan V.A. The method of gas-dynamic calculation of nitrogen cryosurgical apparatus. Problemy zdorov’ya i ekologii 2015; 4(46): 101–105.
  75. Taka S.J., Srinivasan S. NIRViz: 3D visualization software for multimodality optical imaging using visualization toolkit (VTK) and insight segmentation toolkit (ITK). J Digit Imaging 2011; 24(6): 1103–1111, https://doi.org/10.1007/s10278-011-9362-5.
  76. Nolden M., Zelzer S., Seitel A., Wald D., Müller M., Franz A.M., Maleike D., Fangerau M., Baumhauer M., Maier-Hein L., Maier-Hein K.H., Meinzer H.P., Wolf I. The Medical Imaging Interaction Toolkit: challenges and advances: 10 years of open-source development. Int J Comput Assist Radiol Surg 2013; 8(4): 607–620, https://doi.org/10.1007/s11548-013-0840-8.
  77. Pryluck D.S., Erinjeri J.P. Interventional radiology. In: Desmoid tumors. Springer Netherlands 2012; p. 127–144, https://doi.org/10.1007/978-94-007-1685-8_9.
  78. Hasgall P.A., Neufeld E., Gosselin M.C., Klingenböck A., Kuster N., Hasgall P., Gosselin M. IT’IS Database for thermal and electromagnetic parameters of biological tissues. Version 2.5. 2014.
  79. Choi J., Bischof J.C. Review of biomaterial thermal property measurements in the cryogenic regime and their use for prediction of equilibrium and non-equilibrium freezing applications in cryobiology. Cryobiology 2010; 60(1): 52–70, https://doi.org/10.1016/j.cryobiol.2009.11.004.
  80. Muraviev V. Cryoablation of prostate cancer. Eksperimental’naya i klinicheskaya urologiya 2011; 2–3: 37–39.
  81. Butorina A.V., Arharov A.M., Matveev V.A., Tsyganov D.I., Mitrokhin V.N., Polyaev Yu.A. Real possibilities of cryo-microwave technologies in surgery. Inzhenernyy zhurnal: nauka i innovatsii 2012; 5(5): 13.
  82. Kalmykova Z.V., Makova M.K., Mezhov-Deglin L.P., Lanin A.N., Petrusenko I.V., Shafranov V.V. Portable devices for cryogenic surgery and therapy. In: 10th International Conference on Cryocrystals and Quantum Crystals. Almaty: 2014; p. 73.
  83. Qiu W., Yuchi M., Ding M., Tessier D., Fenster A. Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy. Med Phys 2013; 40(4): 042902: https://doi.org/10.1118/1.4795337.
  84. Abdelaziz S., Esteveny L., Renaud P., Bayle B., Barbé L., De Mathelin M., Gangi A. Design considerations for a novel MRI compatible manipulator for prostate cryoablation. Int J Comput Assist Radiol Surg 2011; 6(6): 811-819, https://doi.org/10.1007/s11548-011-0558-4.
  85. Eslami S., Fischer G.S., Song S.E., Tokuda J., Hata N., Tempany C.M., Iordachita I. Towards clinically optimized MRI-guided surgical manipulator for minimally invasive prostate percutaneous interventions: constructive design. IEEE Int Conf Robot Autom 2013; 20132: 1228–1233, https://doi.org/10.1109/icra.2013.6630728.
  86. Verkhovnyy A.I., Vasil’ev M.K., Savel’eva S.K., Ponomarev D.E., Antonov E.A. Modern tendencies of improving cryomedical equipment in RF. Molodezhnyy nauchno-tekhnicheskiy vestnik 2016; 4: 3.
  87. Kickhefel A., Weiss C., Roland J., Gross P., Schick F., Salomir R. Correction of susceptibility-induced GRE phase shift for accurate PRFS thermometry proximal to cryoablation iceball. MAGMA 2012; (25): 23–31, https://doi.org/10.1007/s10334-011-0277-4.
  88. Zou C., Shen H., He M., Tie C., Chung Y.C., Liu X. A fast referenceless PRFS-based MR thermometry by phase finite difference. Phys Med Biol 2013; 58(16); 5735–5751, https://doi.org/10.1088/0031-9155/58/16/5735.
  89. Overduin C.G., Bomers J.G., Jenniskens S.F., Hoes M.F., Ten Haken B., de Lange F., Fütterer J.J., Scheenen T.W. T1-weighted MR image contrast around a cryoablation iceball: a phantom study and initial comparison with in vivo findings. Med Phys 2014; 41(11): 112301, https://doi.org/10.1118/1.4896824.
  90. Shakurov A.V. Issledovanie teploobmena pri okhlazhdenii biotkani vnutrennikh organov dlya provedeniya roboticheskikh operatsiy. Dis. ... kand. tekh. nauk [Study of thermal exchange in cooling visceral biotissue to perform robotic operations. PhD thesis]. Moscow; 2016.
  91. Shevchenko Yu.L. From Leonardo Da Vinci to the “Da Vinci” robot. Vestnik Natsional’nogo mediko-khirurgicheskogo tsentra im. N.I. Pirogova 2012; 7(1): 15–20.
  92. Baykova E.S., Mugin O.O., Tsyganov D.I. Robotics research development for organizations within the jurisdiction of FASO Russia. Izvestiya YuFU. Tekhnicheskie nauki 2016; 1(174): 219–227.
  93. Su H., Cole G.A., Fischer G.S. High-field MRI-compatible needle placement robots for prostate interventions: pneumatic and piezoelectric approaches. Advances in robotics and virtual reality. Intelligent systems reference library. Gulrez T., Hassanien A.E. (editors). Springer Berlin Heidelberg; 2012; p. 3–32, https://doi.org/10.1007/978-3-642-23363-0_1.
  94. Wei Z., Gardi L., Edirisinghe C., Downey D., Fenster A. Three-dimensional ultrasound guidance and robot assistance for prostate brachytherapy. In: Image-guided interventions. Springer US; 2008; p. 429–460, https://doi.org/10.1007/978-0-387-73858-1_15.
  95. Khallaghi S., Sánchez C.A., Rasoulian A., Nouranian S., Romagnoli C., Abdi H., Chang S.D., Black P.C., Goldenberg L., Morris W.J., Spadinger I., Fenster A., Ward A., Fels S., Abolmaesumi P. Statistical biomechanical surface registration: application to MR-TRUS fusion for prostate interventions. IEEE Trans Med Imaging 2015; 34(12): 2535–2549, https://doi.org/10.1109/tmi.2015.2443978.
  96. Rodgers J., Tessier D., D’Souza D., Leung E., Hajdok G., Fenster A. Development of 3D ultrasound needle guidance for high-dose-rate interstitial brachytherapy of gynaecological cancers. Proc. SPIE 9790, Medical Imaging 2016: Ultrasonic Imaging and Tomography 2016; 97900I, https://doi.org/10.1117/12.2216546.
  97. Hrinivich W.T., Hoover D.A., Surry K., Edirisinghe C., Montreuil J., D’Souza D., Fenster A., Wong E. Three-dimensional transrectal ultrasound guided high-dose-rate prostate brachytherapy: a comparison of needle segmentation accuracy with two-dimensional image guidance. Brachytherapy 2016; 15(2): 231–239, https://doi.org/10.1016/j.brachy.2015.12.005.
  98. Meerovich G.A., Kurlov V.N., Pustynskiy I.N., Shikunova I.A. Ustroystvo dlya lokal’nogo okhlazhdeniya biologicheskoy tkani [A device for local cooling of biological tissue]. Patent RU 118856. 2011.
  99. Fruchter O., Kramer M.R. Retrieval of various aspirated foreign bodies by flexible cryoprobe: in vitro feasibility study. Clin Respir J 2015; 9(2): 176–179, https://doi.org/10.1111/crj.12120.
  100. Zharkov I.V., Bogorad V.S., Korpan N.N., Leshchenko V.M. Universal cryosurgical complex — future of cryosurgical equipment. In: 16th World Congress of the ISC. October 29–November 2, 2011; Hofburg, Vienna, Austria. Korpan N.N., Sumida S. (editors). Vienna: University Facultas Publisher; 2011; p. 149–150.
  101. Spoerl S., Gust N., Rackow S., Schmidt D. Medical device for cold application in surgery. Cryobiology 2015; 71(3): 547–548, https://doi.org/10.1016/j.cryobiol.2015.10.045.
  102. Lee C., Baek S., Lee J., Hwang G., Jeong S., Park S.W. Development of a closed-loop J–T cryoablation device with a long cooling area and multiple expansion parts. Med Eng Phys 2014; 36(11): 1464–1472, https://doi.org/10.1016/j.medengphy.2014.07.017.
  103. Littrup P.J. The impact of cryotechnology upon the clinical spectrum and future of cryoablation procedures. In: 16th World Congress of the ISC. October 29–November 2, 2011; Hofburg, Vienna, Austria. Korpan N.N., Sumida S. (editors). Vienna: University Facultas Publisher; 2011; p. 53–54.
  104. Gafton G.I., Prokhorov G.G., Kostromina E.V. Technology of puncture cryosurgery for soft tissue tumors. Voprosy onkologii 2016; 62(1): 63–66.
  105. Belyaev A.M., Prokhorov G.G., Radzhabova Z.A., Madagov A.S., Khadzieva M.I., Kostromina E.V., Gurin A.V., Rakitina D.A., Nazhmudinov R.A. Puncture cryodestruction of recurrent facial area basaliomas with ultrasound scan and surgery monitoring. Voprosy onkologii 2016; 62(2): 296–301.
  106. Belyaev A.M., Prokhorov G.G., Gafton G.I., Gasanov M.I., Radzhabova Z.A., Prokhorov D.G., Gritsaenko A.E., Gurin A.V. Technology of minimally invasive cryodestruction of recurrent tumors. Voprosy onkologii 2016; 62(3): 440–442.
Shakurov А.V., Pushkarev А.V., Pushkarev V.А., Tsiganov D.I. Prerequisites for Developing New Generation Cryosurgical Devices (Review). Sovremennye tehnologii v medicine 2017; 9(2): 178, https://doi.org/10.17691/stm2017.9.2.23


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg