Neurointerface with Double Feedback from Subject’s EEG for Correction of Stress-Induced States
The aim of the study is a comparative evaluation of the effectiveness of the neurointerfaces using single (sound) or double (light-sound) feedback from the human EEG when suppressing stress-induced states.
Materials and Methods. In one of the three experiments, 16 stressed volunteers were presented with classical music (control). In the other two experiments, either single feedback was used, in which subjects are presented with sound stimuli obtained by converting the current values of EEG oscillators into music-like signals, or double feedback, in which the described music-like signals were supplemented by rhythmic light stimuli controlled by the raw EEG of the subject.
Results. The most pronounced effects — a significant increase in the alpha EEG power relative to the background and significant positive shifts in subjective indicators — were noted under double feedback from subject’s EEG due to the involvement of integrative, adaptive and resonance mechanisms of the central nervous system in the processes of functional state normalization.
Conclusion. The use of the double audio-visual feedback from the human EEG appears to be a promising way to improve the effectiveness of neurointerfaces in correcting stress-induced functional states.
- Kotozaki Y., Takeuchi H., Sekiguchi A., Yamamoto Y.,
Shinada T., Araki T., Takahashi K., Taki Y., Ogino T., Kiguchi M., Kawashima R. Biofeedback-based training for stress management in daily hassles: an intervention study. Brain Behav 2014; 4(4): 566–579, https://doi.org/10.1002/brb3.241. - Dillon A., Kelly M., Robertson I.H., Robertson D.A. Smartphone applications utilizing biofeedback can aid stress reduction. Front Psychol 2016; 7: 832, https://doi.org/10.3389/fpsyg.2016.00832.
- Phneah S.W., Nisar H. EEG-based alpha neurofeedback training for mood enhancement. Australas Phys Eng Sci Med 2017; 40(2): 325–336, https://doi.org/10.1007/s13246-017-0538-2.
- Subhani A.R., Kamel N., Mohamad Saad M.N., Nandagopal N., Kang K., Malik A.S. Mitigation of stress: new treatment alternatives. Cogn Neurodyn 2018; 12(1): 1–20, https://doi.org/10.1007/s11571-017-9460-2.
- Thibault R.T., Lifshitz M., Raz A. The self-regulating brain and neurofeedback: experimental science and clinical promise. Cortex 2015; 74: 247–261, https://doi.org/10.1016/j.cortex.2015.10.024.
- Slutzky M.W., Flint R.D. Physiological properties of brain-machine interface input signals. J Neurophysiol 2017; 118(2): 1329–1343, https://doi.org/10.1152/jn.00070.2017.
- Fedotchev А.I., Parin S.B., Polevaya S.A., Velikova S.D. Brain-computer interface and neurofeedback technologies: current state, problems and clinical prospects (review). Sovremennye tehnologii v medicine 2017; 9(1): 175, https://doi.org/10.17691/stm2017.9.1.22.
- Fedotchev A.I., Radchenko G.S. Music therapy and “brain music” state of the art, problems and perspectives problems and perspectives. Uspekhi fiziologicheskikh nauk 2013; 44(4): 35–50.
- Fedotchev A.I., Oh S.J., Semikin G.I. Combination of neurofeedback technique with music therapy for effective correction of stress-induced disorders. Sovremennye tehnologii v medicine 2014; 6(3): 60–63.
- Fedotchev A.I., Bondar A.T., Bakhchina A.V., Grigorieva V.N., Katayev A.A., Parin S.B., Radchenko G.S., Polevaya S.A. Transformation of patient’s EEG oscillators into music-like signals for correction of stress-induced functional states. Sovremennye tehnologii v medicine 2016; 8(1): 93, https://doi.org/10.17691/stm2016.8.1.12.
- Roy C., Lagarde J., Dotov D., Dalla Bella S. Walking to a multisensory beat. Brain Cogn 2017; 113: 172–183, https://doi.org/10.1016/j.bandc.2017.02.002.
- Doskin V.A., Lavrent’eva N.A., Miroshnikov M.N., Sharay V.V. Test for differential self-assessment of functional state. Voprosy psikhologii 1973; 19(6): 141–145.
- Grigorieva V.M., Tkhostov A.Sh. Method for assessing human emotional state. Patent RU 2291720 С1. 2007.
- Kataev A.A., Bakhchina A.V., Polevay S.A., Fedotchev A.I. Connection between subjective and objective estimates of hunan functional state (approbation of rapid test for measurement of stress level). Vestnik psikhofiziologii 2017; 2: 62–68.
- Fedotchev A.I., Bondar’ A.T., Bakhchina A.V., Parin S.B., Polevaya S.A., Radchenko G.S. Music-acoustic signals controlled by subject’s brain potentials in the correction of unfavorable functional states. Uspekhi fiziologicheskikh nauk 2016; 47(1): 69–79.
- de Graaf T.A., Gross J., Paterson G., Rusch T., Sack A.T., Thut G. Alpha-band rhythms in visual task performance: phase-locking by rhythmic sensory stimulation. PLoS One 2013; 8(3): e60035, https://doi.org/10.1371/journal.pone.0060035.
- Choi I., Rhiu I., Lee Y., Yun M.H., Nam C.S. A systematic review of hybrid brain-computer interfaces: taxonomy and usability perspectives. PLoS One 2017; 12(4): e0176674, https://doi.org/10.1371/journal.pone.0176674.
- Sollfrank T., Ramsay A., Perdikis S., Williamson J., Murray-Smith R., Leeb R., Millán J.D.R., Kübler A. The effect of multimodal and enriched feedback on SMR-BCI performance. Clin Neurophysiol 2016; 127(1): 490–498, https://doi.org/10.1016/j.clinph.2015.06.004.
- Hong K.S., Khan M.J. Hybrid brain-computer interface techniques for improved classification accuracy and increased number of commands: a review. Front Neurorobot 2017; 11: 35, https://doi.org/10.3389/fnbot.2017.00035.
- Gui K., Liu H., Zhang D. Towards multimodal human-robot interaction to enhance active participation of users in gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2017; 25(11): 2054–2066, https://doi.org/10.1109/tnsre.2017.2703586.