Photodynamic Theranostics of Central Lung Cancer: Capabilities of Early Diagnosis and Minimally Invasive Therapy (Review)
The aim of the study was to assess the prospects for central lung cancer (CLC) screening using fluorescent diagnostics and its treatment by endobronchial photodynamic therapy (PDT).
Bronchoscopic fluorescent diagnostics using chlorin e6 photosensitizers and a developed instrumental system enable to reveal tumor changes in large bronchi mucosa at early stages, and a developed PDT technique performed under fluorescent control helps achieve personalized treatment. Such an approach is considered as a theranostic technique — photodynamic theranostics.
Central lung cancer screening requires a fluorescent dye characterized by availability and can be used directly within the examination. Indocyanine green can be used as a dye, its peculiarity is the necessity to excite and record fluorescence in the near-infrared (NIR) wavelength band. First experiments using NIR bands to diagnose a bronchoscopic system showed the detectability of tumor areas using on-site bronchoscopic photodynamic theranostics, which consists in NIR imaging of tumor foci when a standard dose of indocyanine green is administered during the examination.
Conclusion. Further progress of early diagnostics and minimally invasive CLC therapy will be determined by the development of new photosensitizers, which should be characterized by a high absorption band in NIR area, quick accumulation in a tumor, high yield of single oxygen in NIR illumination, bright fluorescence, high potential in terms of the induction of an anti-tumor immune response.
- Global Burden of Disease Cancer Collaboration. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015. JAMA Oncol 2017; 3(4): 524, https://doi.org/10.1001/jamaoncol.2016.5688.
- Eggert J.A., Palavanzadeh M., Blanton A. Screening and early detection of lung cancer. Semin Oncol Nurs 2017; 33(2): 129–140, https://doi.org/10.1016/j.soncn.2017.03.001.
- Kosenok V.K., Belskaya L.V., Massard Z., Zavyalov A.A. Lung cancer incidence in Omsk Region. Sibirskij onkologiceskij zurnal 2016; 15(4): 21–25, https://doi.org/10.21294/1814-4861-2016-15-4-21-25.
- Mazzone P.J., Silvestri G.A., Patel S., Kanne J.P., Kinsinger L.S., Wiener R.S., Soo Hoo G., Detterbeck F.C. Screening for lung cancer: CHEST guideline and expert panel report. Chest 2018; 153(4): 954–985, https://doi.org/10.1016/j.chest.2018.01.016.
- Sun S., Yang Y., Chen M., Wang L., Pan H., Zhang X., Wagnieres G., Mohammad Y., Barreiro E., Pirozzolo G., Villeneuve P.J., Zhan P., Wan B.; written on behalf of the AME Lung Cancer Collaborative Group. Comparison of autofluorescence and white-light bronchoscopies performed with the Evis Lucera Spectrum for the detection of bronchial cancers: a meta-analysis. Transl Lung Cancer Res 2020; 9(1): 23–32, https://doi.org/10.21037/tlcr.2020.01.04.
- Ishiwata T., Gregor A., Inage T., Yasufuku K. Bronchoscopic navigation and tissue diagnosis. Gen Thorac Cardiovasc Surg 2020; 68(7): 672–678, https://doi.org/10.1007/s11748-019-01241-0.
- He Q., Wang Q., Wu Q., Feng J., Cao J., Chen B.Y. Value of autofluorescence imaging videobronchoscopy in detecting lung cancers and precancerous lesions: a review. Respir Care 2013; 58(12): 2150–2159, https://doi.org/10.4187/respcare.02524.
- Shibuya K., Hoshino H., Chiyo M., Iyoda A., Yoshida S., Sekine Y., Iizasa T., Saitoh Y., Baba M., Hiroshima K., Ohwada H., Fujisawa T. High magnification bronchovideoscopy combined with narrow band imaging could detect capillary loops of angiogenic squamous dysplasia in heavy smokers at high risk for lung cancer. Thorax 2003; 58(11): 989–995, https://doi.org/10.1136/thorax.58.11.989.
- Goorsenberg A., Kalverda K.A., Annema J., Bonta P. Advances in optical coherence tomography and confocal laser endomicroscopy in pulmonary diseases. Respiration 2020; 99(3): 190–205, https://doi.org/10.1159/000503261.
- McGregor H.C., Short M.A., McWilliams A., Shaipanich T., Ionescu D.N., Zhao J., Wang W., Chen G., Lam S., Zeng H. Real-time endoscopic Raman spectroscopy for in vivo early lung cancer detection. J Biophotonics 2017; 10(1): 98–110, https://doi.org/10.1002/jbio.201500204.
- Goebel C., Louden C.L., McKenna R. Jr., Onugha O., Wachtel A., Long T. Blood test shows high accuracy in detecting stage i non-small cell lung cancer. BMC Cancer 2020; 20(1): 137, https://doi.org/10.1186/s12885-020-6625-x.
- Einoch Amor R., Nakhleh M.K., Barash O., Haick H. Breath analysis of cancer in the present and the future. Eur Respir Rev 2019; 28(152): 190002, https://doi.org/10.1183/16000617.0002-2019.
- Moghissi K., Dixon K. Image-guided surgery and therapy for lung cancer: a critical review. Futur Oncol 2017; 13(26): 2383–2394, https://doi.org/10.2217/fon-2017-0265.
- Lam S., MacAulay C., Palcic B. Detection and localization of early lung cancer by imaging techniques. Chest 1993; 103(1 Suppl): 12S–14S, https://doi.org/10.1378/chest.103.1_supplement.12s.
- Palcic B., Lam S., Hung J., MacAulay C. Detection and localization of early lung cancer by imaging techniques. Chest 1991; 99(3): 742–743, https://doi.org/10.1378/chest.99.3.742.
- Ikeda N., Honda H., Hayashi A., Usuda J., Kato Y., Tsuboi M., Ohira T., Hirano T., Kato H., Serizawa H., Aoki Y. Early detection of bronchial lesions using newly developed videoendoscopy-based autofluorescence bronchoscopy. Lung Cancer 2006; 52(1): 21–27, https://doi.org/10.1016/j.lungcan.2005.11.009.
- Zaric B., Perin B., Carapic V., Stojsic V., Matijasevic J., Andrijevic I., Kopitovic I. Diagnostic value of autofluorescence bronchoscopy in lung cancer. Thorac Cancer 2013; 4(1): 1–8, https://doi.org/10.1111/j.1759-7714.2012.00130.x.
- Zhang J., Wu J., Xu Z., Yang Y., Liao H., Liang Z. Diagnostic accuracy of autofluorescence bronchoscopy for airway inflammatory changes in studies for cancer detection: a systematic review and meta-analysis. EC Pulmonol Respir Med 2018; 7(6): 370–378.
- Epelbaum O., Aronow W.S. Autofluorescence bronchoscopy for lung cancer screening: a time to reflect. Ann Transl Med 2016; 4(16): 15–17, https://doi.org/10.21037/atm.2016.06.34.
- Papayan G.V., Martynov B.V., Svistov D.V. Experimental comparison of methods for fluorescence visualization of glial tumors. J Opt Technol 2016; 83(12): 765–772, https://doi.org/10.1364/jot.83.000765.
- Baumgartner R., Huber R.M., Schulz H., Stepp H., Rick K., Gamarra F., Leberig A., Roth C. Inhalation of 5-aminolevulinic acid: a new technique for fluorescence detection of early stage lung cancer. J Photochem Photobiol B 1996; 36(2): 169–174, https://doi.org/10.1016/s1011-1344(96)07365-4.
- Gamarra F., Lingk P., Marmarova A., Edelmann M., Hautmann H., Stepp H., Baumgartner R., Huber R.M. 5-Aminolevulinic acid-induced fluorescence in bronchial tumours: dependency on the patterns of tumour invasion. J Photochem Photobiol B Biol 2004; 73(1–2): 35–42, https://doi.org/10.1016/j.jphotobiol.2003.09.009.
- Stanzel F. Fluorescent bronchoscopy: contribution for lung cancer screening? Lung Cancer 2004; 45 Suppl 2: S29–S37, https://doi.org/10.1016/j.lungcan.2004.07.995.
- Zimmermann A., Ritsch-Marte M., Kostron H. mTHPC-mediated photodynamic diagnosis of malignant brain tumors. Photochem Photobiol 2001; 74(4): 611–616, https://doi.org/10.1562/0031-8655(2001)0740611:MMPDOM2.0.CO;2.
- Kang U., Papayan G.V., Obukhova N.A., Bae S.J., Lee D.S., Jung M.W., Berezin V.B., Motyko A.A., Plokhikh D.P., Slobodenyuk S.A. System for fluorescence diagnosis and photodynamic therapy of cervical disease. J Opt Technol 2015; 82(12): 815–823, https://doi.org/10.1364/jot.82.000815.
- Spikes J.D., Bommer J.C. Photobleaching of mono- L-aspartil chlorin e6 (NPe6): a candidate sentisizer for the photodynamic therapy of tumors. Photochem Photobiol 1993; 58(3): 346–350, https://doi.org/10.1111/j.1751-1097.1993.tb09572.x.
- Usuda J., Tsutsui H., Honda H., Ichinose S., Ishizumi T., Hirata T., Inoue T., Ohtani K., Maehara S., Imai K., Tsunoda Y., Kubota M., Ikeda N., Furukawa K., Okunaka T., Kato H. Photodynamic therapy for lung cancers based on novel photodynamic diagnosis using talaporfin sodium (NPe6) and autofluorescence bronchoscopy. Lung Cancer 2007; 58(3): 317–323, https://doi.org/10.1016/j.lungcan.2007.06.026.
- Usuda J., Ichinose S., Ishizumi T., Hayashi H., Ohtani K., Maehara S., Ono S., Honda H., Kajiwara N., Uchida O., Tsutsui H., Ohira T., Kato H., Ikeda N. Outcome of photodynamic therapy using NPe6 for bronchogenic carcinomas in central airways >1.0 cm in diameter. Clin Cancer Res 2010; 16(7): 2198–2204, https://doi.org/10.1158/1078-0432.ccr-09–2520.
- Ikeda N., Usuda J., Maehara S. Photodynamic therapy for central-type early-stage lung cancer. Gen Thorac Cardiovasc Surg 2020; 68(7): 679–683, https://doi.org/10.1007/s11748-019-01240-1.
- Akopov A.L., Rusanov A.A., Papayan G.V., Kazakov N.V., Gerasin A.V. Endobronchial photodynamic therapy under fluorescence control: photodynamic theranostics. Vestnik khirurgii im. I.I. Grekova 2016; 175(5): 26–31, https://doi.org/10.24884/0042-4625-2016-175-5-26-31.
- Yanovsky R.L., Bartenstein D.W., Rogers G.S., Isakoff S.J., Chen S.T. Photodynamic therapy for solid tumors: a review of the literature. Photodermatol Photoimmunol Photomed 2019; 35(5): 295–303, https://doi.org/10.1111/phpp.12489.
- Hamblin M.R. Photodynamic therapy for cancer: what’s past is prologue. Photochem Photobiol 2020; 96(3): 506–516, https://doi.org/10.1111/php.13190.
- Wang K., Yu B., Pathak J.L. An update in clinical utilization of photodynamic therapy for lung cancer. J Cancer 2021; 12(4): 1154–1160, https://doi.org/10.7150/jca.51537.
- Simone C.B. II, Friedberg J.S., Glatstein E., Stevenson J.P., Sterman D.H., Hahn S.M., Cengel K.A. Photodynamic therapy for the treatment of non-small cell lung cancer. J Thorac Dis 2012; 4(1): 63–75, https://doi.org/10.3978/j.issn.2072-1439.2011.11.05.
- Shafirstein G., Battoo A., Harris K., Baumann H., Gollnick S.O., Lindenmann J., Nwogu C.E. Photodynamic therapy of non-small cell lung cancer narrative review and future directions. Ann Am Thorac Soc 2016; 13(2): 265–275, https://doi.org/10.1513/annalsats.201509-650fr.
- Chang H., Liao K.S., Hsieh Y.S. Bronchoscopic light delivery method for peripheral lung cancer photodynamic therapy. J Thorac Dis 2020; 12(7): 3611–3621, https://doi.org/10.21037/jtd-19–3887.
- Bansal S., Bechara R., Patel J., Mehta H., Ferguson J., Casal R. Safety and feasibility study of photodynamic therapy for ablation of peripheral lung cancer. Chest 2020; 157(6): A239, https://doi.org/10.1016/j.chest.2020.05.295.
- Serebryakov V.A., Boyko E.V., Maslov V.G., Melikhova M.V., Papayan G.V. Photophysical aspects of corneal cross-linking: problems and prospects (review). Opticheskii zhurnal 2020; 87(8): 21–40, https://doi.org/10.17586/1023-5086-2020-87-08-21-40.
- Akopov A., Papayan G. Photodiagnosis and photodynamic therapy photodynamic theranostics of central lung cancer: present state and future prospects. Photodiagnosis Photodyn Ther 2021; 33: 102203, https://doi.org/10.1016/j.pdpdt.2021.102203.
- Akopov A.L., Rusanov A.A., Papayan G.V., Kazakov N.V., Gerasin A.V., Urtenova M.A. Endobronchial photodynamic therapy under fluorescence control: photodynamic theranostics. Photodiagnosis Photodyn Ther 2017; 19: 73–77, https://doi.org/10.1016/j.pdpdt.2017.05.001.
- Papayan G.V., Akopov A.L., Goncharov S.E., Struy A.V., Kazakov N.V. Video endoscopic system for photodynamic theranostics of central lung cancer. Opticheskii zhurnal 2019; 86(7): 27–34, https://doi.org/10.17586/1023-5086-2019-86-07-27–34.
- Papayan G., Goncharov S., Kazakov N., Strui A., Akopov A. Clinical potential of photodynamic diagnosis and therapy of tracheobronchial malignancies in the visible and infrared spectral ranges. Transl Biophotonics 2020; 2(1–2): e201900019, https://doi.org/10.1002/tbio.201900019.
- Papayan G.V., Akopov A.L., Goncharov S.E. Method for photodynamic diagnostics and therapy of central lung cancer and device for implementation thereof. Patent RU 2736909. 2020.
- Mikada M., Sukhbaatar A., Miura Y., Horie S., Sakamoto M., Mori S., Kodama T. Evaluation of the enhanced permeability and retention effect in the early stages of lymph node metastasis. Cancer Sci 2017; 108(5): 846–852, https://doi.org/10.1111/cas.13206.
- Egloff-Juras C., Bezdetnaya L., Dolivet G., Lassalle H.P. NIR fluorescence-guided tumor surgery: new strategies for the use of indocyanine green. Int J Nanomedicine 2019; 14: 7823–7838, https://doi.org/10.2147/ijn.s207486.
- Okubo K., Uenosono Y., Arigami T., Matsushita D., Yanagita S., Kijima T., Amatatsu M., Ishigami S., Maemura K., Natsugoe S. Quantitative assessment of fluorescence intensity of ICG in sentinel nodes in early gastric cancer. Gastric Cancer 2018; 21(5): 776–781, https://doi.org/10.1007/s10120-018-0816-z.
- Daly M.J., Wilson B.C., Irish J.C., Jaffray D.A. Navigated non-contact fluorescence tomography. Phys Med Biol 2019; 64(13): 135021, https://doi.org/10.1088/1361-6560/ab1f33.
- Papayan G., Akopov A. Potential of indocyanine green near-infrared fluorescence imaging in experimental and clinical practice. Photodiagnosis Photodyn Ther 2018; 24: 292–299, https://doi.org/10.1016/j.pdpdt.2018.10.011.
- Papayan G.V., Akopov A.L. Fluorescence diagnostics in the near-IR: apparatus, application. J Opt Technol 2016; 83(9): 536, https://doi.org/10.1364/jot.83.000536.
- Nielsen J., Nerup N., Møller S., de Nijs R., Rasmussen A., Bo Svendsen L., Kjaer M.S., Brix Christensen V., Borgwardt L. Minimally invasive assessment of hepatic function in children with indocyanine green elimination: a validation study. Scand J Gastroenterol 2019; 54(4): 485–491, https://doi.org/10.1080/00365521.2019.1591497.
- Park Y.M., Quan Y.H., Kwon K.H., Cho J.G., Woo J.S., Kim B.M., Lee Y.S., Jeong J.M., Kim H.K., Song J.J. Endoscopic sentinel lymph node biopsy using indocyanine green-neomannosyl human serum albumin. Laryngoscope 2018; 128(4): E135–E140, https://doi.org/10.1002/lary.27036.
- An F., Yang Z., Zheng M., Mei T., Deng G., Guo P., Li Y., Sheng R. Rationally assembled albumin/indocyanine green nanocomplex for enhanced tumor imaging to guide photothermal therapy. J Nanobiotechnology 2020; 18(1): 49, https://doi.org/10.1186/s12951-020-00603-8.
- Papayan G.V., Chefu S.G., Petrishchev N.N., Ilyin A.A., Akopov A.L. Possibility of the use of the conjugate of indocyanine green with albumin for infrared fluorescent diagnosis of pathological processes in experiment. Voprosi oncologii 2016; 62(6): 838–844.
- Predina J.D., Keating J., Newton A., Corbett C., Xia L., Shin M., Frenzel Sulyok L., Deshpande C., Litzky L., Nie S., Kucharczuk J.C., Singhal S. A clinical trial of intraoperative near-infrared imaging to assess tumor extent and identify residual disease during anterior mediastinal tumor resection. Cancer 2019; 125(5): 807–817, https://doi.org/10.1002/cncr.31851.
- Predina J.D., Newton A.D., Corbett C., Shin M., Sulfyok L.F., Okusanya O.T., Delikatny E.J., Nie S., Gaughan C., Jarrar D., Pechet T., Kucharczuk J.C., Singhal S. Near-infrared intraoperative imaging for minimally invasive pulmonary metastasectomy for sarcomas. J Thorac Cardiovasc Surg 2019; 157(5): 2061–2069, https://doi.org/10.1016/j.jtcvs.2018.10.169.
- Kennedy G.T., Newton A., Predina J., Singhal S. Intraoperative near-infrared imaging of mesothelioma. Transl Lung Cancer Res 2017; 6(3): 279–284, https://doi.org/10.21037/tlcr.2017.05.01.
- Predina J.D., Newton A.D., Connolly C., Dunbar A., Baldassari M., Deshpande C., Cantu E. III, Stadanlick J., Kularatne S.A., Low P.S., Singhal S. Identification of a folate receptor-targeted near-infrared molecular contrast agent to localize pulmonary adenocarcinomas. Mol Ther 2018; 26(2): 390–403, https://doi.org/10.1016/j.ymthe.2017.10.016.
- Akopov A.L., Papayan G.V., Karlson A., Chistyakov I.V., Dvoretskiy S.Yu., Agishev A.S., Gorbunkov S.D., Il’in A.A. Infrared fluorescence guided pleural biopsy during thoracoscopy. Vestnik khirurgii im. I.I. Grekova 2017; 176(6): 18–21, https://doi.org/10.24884/0042-4625-2017-176-6-18-21.
- Papayan G., Akopov A., Petrishchev N. Experimental and clinical application of near-infrared fluorescence diagnostics and photodynamic therapy. In: International Conference Laser Optics (ICLO). Institute of Electrical and Electronics Engineers; 2018; p. 581, https://doi.org/10.1109/lo.2018.8435536.
- Giraudeau C., Moussaron A., Stallivieri A., Mordon S., Frochot C. Indocyanine green: photosensitizer or chromophore? Still a debate. Curr Med Chem 2014; 21(16): 1871–1897, https://doi.org/10.2174/0929867321666131218095802.
- Guo X., Qu J., Zhu C., Li W., Luo L., Yang J., Yin X., Li Q., Du Y., Chen D., Qiu Y., Lou Y., You J. Synchronous delivery of oxygen and photosensitizer for alleviation of hypoxia tumor microenvironment and dramatically enhanced photodynamic therapy. Drug Deliv 2018; 25(1): 585–599, https://doi.org/10.1080/10717544.2018.1435751.
- Huang X., Wu J., He M., Hou X., Wang Y., Cai X., Xin H., Gao F., Chen Y. Combined cancer chemo-photodynamic and photothermal therapy based on ICG/PDA/TPZ-loaded nanoparticles. Mol Pharm 2019; 16(5): 2172–2183, https://doi.org/10.1021/acs.molpharmaceut.9b00119.
- Isobe Y., Sato K., Nishinaga Y., Takahashi K., Taki S., Yasui H., Shimizu M., Endo R., Koike C., Kuramoto N., Yukawa H., Nakamura S., Fukui T., Kawaguchi K., Chen-Yoshikawa T.F., Baba Y., Hasegawa Y. Near infrared photoimmunotherapy targeting DLL3 for small cell lung cancer. EBioMedicine 2020; 52: 102632, https://doi.org/10.1016/j.ebiom.2020.102632.
- Ali T., Nakajima T., Sano K., Sato K., Choyke P.L., Kobayashi H. Dynamic fluorescent imaging with indocyanine green for monitoring the therapeutic effects of photoimmunotherapy. Contrast Media Mol Imaging 2014; 9(4): 276–282, https://doi.org/10.1002/cmmi.1570.
- Nakajima K., Ogawa M. Phototoxicity in near-infrared photoimmunotherapy is influenced by the subcellular localization of antibody-IR700. Photodiagnosis Photodyn Ther 2020; 31: 101926, https://doi.org/10.1016/j.pdpdt.2020.101926.
- Mroz P., Hamblin M.R. The immunosuppressive side of PDT. Photochem Photobiol Sci 2011; 10(5): 751–758, https://doi.org/10.1039/c0pp00345j.
- Gollnick S.O. Photodynamic therapy and antitumor immunity. J Natl Compr Canc Netw 2012; 10(Suppl 2): S40–S3, https://doi.org/10.6004/jnccn.2012.0173.
- Dąbrowski J.M., Arnaut L.G. Photodynamic therapy (PDT) of cancer: from local to systemic treatment. Photochem Photobiol Sci 2015; 14(10): 1765–1780, https://doi.org/10.1039/c5pp00132c.
- Maeding N., Verwanger T., Krammer B. Boosting tumor-specific immunity using PDT. Cancers (Basel) 2016; 8(10): 91, https://doi.org/10.3390/cancers8100091.
- Anokhin Yu.N., Abakushina E.V. Tumor-specific immune response after photodynamic therapy. Meditsinskaya immunologiya 2016; 18(5): 405–416, https://doi.org/10.15789/1563-0625-2016-5-405-416.
- Hwang H.S., Shin H., Han J., Na K. Combination of photodynamic therapy (PDT) and anti-tumor immunity in cancer therapy. J Pharm Investig 2018; 48(2): 143–151, https://doi.org/10.1007/s40005-017-0377-x.
- dos Santos A.F., de Almeida D.R.Q., Terra L.F., Baptista M.S., Labriola L. Photodynamic therapy in cancer treatment — an update review. J Cancer Metastasis Treat 2019; 5: 25, https://doi.org/10.20517/2394-4722.2018.83.
- Donohoe C., Senge M.O., Arnaut L.G., Gomes-da-Silva L.C. Cell death in photodynamic therapy: from oxidative stress to anti-tumor immunity. Biochim Biophys Acta Rev Cancer 2019; 1872(2): 188308, https://doi.org/10.1016/j.bbcan.2019.07.003.
- Beltrán Hernández I., Yu Y., Ossendorp F., Korbelik M., Oliveira S. Preclinical and clinical evidence of immune responses triggered in oncologic photodynamic therapy: clinical recommendations. J Clin Med 2020; 9(2): 333, https://doi.org/10.3390/jcm9020333.
- Cramer G.M., Moon E.K., Cengel K.A., Busch T.M. Photodynamic therapy and immune checkpoint blockade. Photochem Photobiol 2020; 96(5): 954–961, https://doi.org/10.1111/php.13300.
- Nath S., Obaid G., Hasan T. The course of immune stimulation by photodynamic therapy: bridging fundamentals of photochemically induced immunogenic cell death to the enrichment of T-cell repertoire. Photochem Photobiol 2019; 95(6): 1288–1305, https://doi.org/10.1111/php.13173.
- Shen L., Zhou T., Fan Y., Chang X., Wang Y., Sun J., Xing L., Jiang H. Recent progress in tumor photodynamic immunotherapy. Chinese Chem Lett 2020; 31(7): 1709–1716, https://doi.org/10.1016/j.cclet.2020.02.007.
- Kabingu E., Oseroff A.R., Wilding G.E., Gollnick S.O. Enhanced systemic immune reactivity to a basal cell carcinoma associated antigen following photodynamic therapy. Clin Cancer Res 2009; 15(13): 4460–4466, https://doi.org/10.1158/1078-0432.ccr-09-0400.
- Theodoraki M.N., Lorenz K., Lotfi R., Fürst D., Tsamadou C., Jaekle S., Mytilineos J., Brunner C., Theodorakis J., Hoffmann T.K., Laban S., Schuler P.J. Influence of photodynamic therapy on peripheral immune cell populations and cytokine concentrations in head and neck cancer. Photodiagnosis Photodyn Ther 2017; 19: 194–201, https://doi.org/10.1016/j.pdpdt.2017.05.015.
- Thong P.S., Ong K.W., Goh N.S., Kho K.W., Manivasager V., Bhuvaneswari R., Olivo M., Soo K.C. Photodynamic-therapy-activated immune response against distant untreated tumours in recurrent angiosarcoma. Lancet Oncol 2007; 8(10): 950–952, https://doi.org/10.1016/s1470-2045(07)70318-2.
- Prignano F., Lotti T., Spallanzani A., Berti S., de Giorgi V., Moretti S. Sequential effects of photodynamic treatment of basal cell carcinoma. J Cutan Pathol 2009; 36(4): 409–416, https://doi.org/10.1111/j.1600-0560.2008.01063.x.
- Adamek M., Kawczyk-Krupka A., Mostowy A., Czuba Z., Krol W., Kasperczyk S., Jakobisiak M., Golab J., Sieron A. Topical ALA-PDT modifies neutrophils’ chemiluminescence, lymphocytes’ interleukin-1beta secretion and serum level of transforming growth factor beta1 in patients with nonmelanoma skin malignancies: a clinical study. Photodiagnosis Photodyn Ther 2005; 2(1): 65–72, https://doi.org/10.1016/s1572-1000(05)00004-9.
- Pellegrini C., Orlandi A., Costanza G., Di Stefani A., Piccioni A., Di Cesare A., Chiricozzi A., Ferlosio A., Peris K., Fargnoli M.C. Expression of IL-23/Th17-related cytokines in basal cell carcinoma and in the response to medical treatments. PLoS One 2017; 12(8): e0183415, https://doi.org/10.1371/journal.pone.0183415.
- Winters U., Daayana S., Lear J.T., Tomlinson A.E., Elkord E., Stern P.L., Kitchener H.C. Clinical and immunologic results of a phase II trial of sequential imiquimod and photodynamic therapy for vulval intraepithelial neoplasia. Clin Cancer Res 2008; 14(16): 5292–5299, https://doi.org/10.1158/1078-0432.ccr-07-4760.
- Reginato E., Lindenmann J., Langner C., Schweintzger N., Bambach I., Smolle-Jüttner F., Wolf P. Photodynamic therapy downregulates the function of regulatory T cells in patients with esophageal squamous cell carcinoma. Photochem Photobiol Sci 2014; 13(9): 1281–1289, https://doi.org/10.1039/c4pp00186a.
- Wang H., Li J., Lv T., Tu Q., Huang Z., Wang X. Therapeutic and immune effects of 5-aminolevulinic acid photodynamic therapy on UVB-induced squamous cell carcinomas in hairless mice. Exp Dermatol 2013; 22(5): 362–363, https://doi.org/10.1111/exd.12132.
- Cecic I., Serrano K., Gyongyossy-Issa M., Korbelik M. Characteristics of complement activation in mice bearing Lewis lung carcinomas treated by photodynamic therapy. Cancer Lett 2005; 225(2): 215–223, https://doi.org/10.1016/j.canlet.2004.11.059.
- Saji H., Song W., Furumoto K., Kato H., Engleman E.G. Systemic antitumor effect of intratumoral injection of dendritic cells in combination with local photodynamic therapy. Clin Cancer Res 2006; 12(8): 2568–2574, https://doi.org/10.1158/1078-0432.ccr-05-1986.
- Kabingu E., Vaughan L., Owczarczak B., Ramsey K.D., Gollnick S.O. CD8+ T cell-mediated control of distant tumours following local photodynamic therapy is independent of CD4+ T cells and dependent on natural killer cells. Br J Cancer 2007; 96(12): 1839–1848, https://doi.org/10.1038/sj.bjc.6603792.
- O’Shaughnessy M.J., Murray K.S., La Rosa S.P., Budhu S., Merghoub T., Somma A., Monette S., Kim K., Corradi R.B., Scherz A., Coleman J.A. Systemic antitumor immunity by PD-1/PD-L1 inhibition is potentiated by vascular-targeted photodynamic therapy of primary tumors. Clin Cancer Res 2018; 24(3): 592–599, https://doi.org/10.1158/1078-0432.ccr-17-0186.
- Karwicka M., Pucelik B., Gonet M., Elas M., Dąbrowski J.M. Effects of photodynamic therapy with redaporfin on tumor oxygenation and blood flow in a lung cancer mouse model. Sci Rep 2019; 9(1): 12655, https://doi.org/10.1038/s41598-019-49064-6.
- Usuda J., Ichinose S., Ishizumi T., Ohtani K., Inoue T., Maehara S., Imai K., Shima K., Ohira T., Kato H., Ikeda N. Molecular determinants of photodynamic therapy for lung cancers. Lasers Surg Med 2011; 43(7): 591–599, https://doi.org/10.1002/lsm.21097.
- Shams M., Owczarczak B., Manderscheid-Kern P., Bellnier D.A., Gollnick S.O. Development of photodynamic therapy regimens that control primary tumor growth and inhibit secondary disease. Cancer Immunol Immunother 2015; 64(3): 287–297, https://doi.org/10.1007/s00262-014-1633-9.
- Lobo A.C., Gomes-da-Silva L.C., Rodrigues-Santos P., Cabrita A., Santos-Rosa M., Arnaut L.G. Immune responses after vascular photodynamic therapy with redaporfin. J Clin Med 2019; 9(1): 104, https://doi.org/10.3390/jcm9010104.
- Wang D., Wang T., Yu H., Feng B., Zhou L., Zhou F., Hou B., Zhang H., Luo M., Li Y. Engineering nanoparticles to locally activate T cells in the tumor microenvironment. Sci Immunol 2019; 4(37): eaau6584, https://doi.org/10.1126/sciimmunol.aau6584.
- Wang M., Rao J., Wang M., Li X., Liu K., Naylor M.F., Nordquist R.E., Chen W.R., Zhou F. Cancer photo-immunotherapy: from bench to bedside. Theranostics 2021; 11(5): 2218–2231, https://doi.org/10.7150/thno.53056.
- Yang J., Hou M., Sun W., Wu Q., Xu J., Xiong L., Chai Y., Liu Y., Yu M., Wang H., Xu Z.P., Liang X., Zhang C. Sequential PDT and PTT using dual-modal single-walled carbon nanohorns synergistically promote systemic immune responses against tumor metastasis and relapse. Adv Sci (Weinh) 2020; 7(16): 2001088, https://doi.org/10.1002/advs.202001088.
- Bao R., Wang Y., Lai J., Zhu H., Zhao Y., Li S., Li N., Huang J., Yang Z., Wang F., Liu Z. Enhancing anti-PD-1/PD-L1 Immune checkpoint inhibitory cancer therapy by CD276-targeted photodynamic ablation of tumor cells and tumor vasculature. Mol Pharm 2019; 16(1): 339–348, https://doi.org/10.1021/acs.molpharmaceut.8b00997.
- Kim S., Kim S.A., Nam G.H., Hong Y., Kim G.B., Choi Y., Lee S., Cho Y., Kwon M., Jeong C., Kim S., Kim I.S. In situ immunogenic clearance induced by a combination of photodynamic therapy and rho-kinase inhibition sensitizes immune checkpoint blockade response to elicit systemic antitumor immunity against intraocular melanoma and its metastasis. J Immunother Cancer 2021; 9(1): e001481, https://doi.org/10.1136/jitc-2020-001481.
- Cavin S., Gkasti A., Faget J., Hao Y., Letovanec I., Reichenbach M., Gonzalez M., Krueger T., Dyson P.J., Meylan E., Perentes J.Y. Low-dose photodynamic therapy promotes a cytotoxic immunological response in a murine model of pleural mesothelioma. Eur J Cardiothoracic Surg 2020; 58(4): 783–791, https://doi.org/10.1093/ejcts/ezaa145.
- Falk-Mahapatra R., Gollnick S.O. Photodynamic therapy and immunity: an update. Photochem Photobiol 2020; 96(3): 550–559, https://doi.org/10.1111/php.13253.