Today: Dec 21, 2024
RU / EN
Last update: Oct 30, 2024
An Algorithm for Automatic Generation and Evaluation of Leaflet Apparatus Models for Heart Valve Prostheses

An Algorithm for Automatic Generation and Evaluation of Leaflet Apparatus Models for Heart Valve Prostheses

Onischenko P.S., Klyshnikov K.Yu., Ovcharenko Е.А., Barbarash L.S.
Key words: heart valve prosthesis; simulation; algorithm for generation and evaluation of leaflet apparatuses.
2022, volume 14, issue 4, page 6.

Full text

html pdf
888
838

The aim of the study is to develop and verify an algorithm for automatic generation of leaflet apparatus models for prosthetic heart valves, to optimize the basic parameters of the models in order to minimize the stress-strain state and maximize the geometric area of the orifice.

Materials and Methods. The suggested algorithm consists of three blocks: “Generator”, “Modeling”, “Analysis”. The first block creates a three-dimensional model of the leaflet apparatus using the specified parameters (height, radius, thickness, degree of “sagging”, angle of the free edge deviation). Numerical simulation of the apparatus functioning is further performed using the finite element method. Then, the statistical analysis of the von Mises stresses is done and the opening area of the design in question is calculated.

Verification was performed by comparing quantitatively the lumen areas of the leaflet apparatus in the open state, obtained from the literature data for the Trifecta bioprosthesis (19, 21, and 23 mm in diameter), with the results of the described algorithm operation.

Results. The verification of the algorithm has demonstrated the following deviations in the lumen area in the open state: 2.85% for 19 mm, 14.81% for 21 mm, and 23.17% for 23 mm models. This difference is due to the choice of the model material (no data could be found on the physical and mechanical properties of the pericardium used for the fabrication of the Trifecta bioprostheses).

The generation of a large number of designs (n=1517) without fixation of certain geometry parameters has shown that thickness of the leaflet apparatus makes the greatest contribution to the degree of opening; its dependence on the thickness and arising peak von Mises stresses has been demonstrated. Of the valvular models obtained, 278 showed the opening degree greater than 80% and maximum peak von Mises stresses below 4 MPa for the proposed model of the pericardium, which is 65% below the ultimate strength of the material.

Out of 278 leaflet models, 3 “optimal” designs were selected meeting the diameter criteria of 19, 21, and 23 mm. The loss index for them was 0.24, 0.19, 0.20 with the opening degrees of 88.28, 84.48, 88.12%, and maximum peak von Mises stresses of 3.62, 1.21, 1.87 MPa, respectively.

Conclusion. The developed algorithm makes it possible to automatically generate three-dimensional models of the leaflet apparatus, numerically simulate the opening process using the finite element method, statistically analyze the results obtained, and calculate the lumen area. The algorithm was verified based on the data for the Trifecta bioprosthesis of three standard sizes. The presented algorithm can be used both for the research and development of various designs and for obtaining “optimal” models of sash devices.

  1. Bokeriya L.A., Milievskaya E.B., Kudzoeva Z.F., Pryanishnikov V.V., Skopin A.I., Yurlov I.A. Serdechno-sosudistaya khirurgiya — 2018. Bolezni i vrozhdennye anomalii sistemy krovoobrashcheniya [Cardiovascular surgery — 2018. Diseases and congenital anomalies of the circulatory system]. Moscow: Nauchnyy tsentr serdechno-sosudistoy khirurgii RAMN; 2019; 270 p.
  2. Siddiqui R.F., Abraham J.R., Butany J. Bioprosthetic heart valves: modes of failure. Histopathology 2009; 55(2): 135–144, https://doi.org/10.1111/j.1365-2559.2008.03190.x.
  3. Siregar S., de Heer F., Groenwold R.H.H., Versteegh M.I.M., Bekkers J.A., Brinkman E.S., Bots M.L., van der Graaf Y., van Herwerden L.A. Trends and outcomes of valve surgery: 16-year results of Netherlands Cardiac Surgery National Database. Eur J Cardiothorac Surg 2014; 46(3): 386–397, https://doi.org/10.1093/ejcts/ezu017.
  4. Isaacs A.J., Shuhaiber J., Salemi A., Isom O.W., Sedrakyan A. National trends in utilization and in-hospital outcomes of mechanical versus bioprosthetic aortic valve replacements. J Thorac Cardiovasc Surg 2015; 149(5): 1262–1269.e3, https://doi.org/10.1016/j.jtcvs.2015.01.052.
  5. Capodanno D., Petronio A.S., Prendergast B., Eltchaninoff H., Vahanian A., Modine T., Lancellotti P., Sondergaard L., Ludman P.F., Tamburino C., Piazza N., Hancock J., Mehilli J., Byrne R.A., Baumbach A., Kappetein A.P., Windecker S., Bax J., Haude M. Standardized definitions of structural deterioration and valve failure in assessing long-term durability of transcatheter and surgical aortic bioprosthetic valves: a consensus statement from the European Association of Percutaneous Cardiovascular Interventions (EAPCI) endorsed by the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur J Cardiothorac Surg 2017; 52(3): 408–417, https://doi.org/10.1093/ejcts/ezx244.
  6. Rodriguez-Gabella T., Voisine P., Puri R., Pibarot P., Rodés-Cabau J. Aortic bioprosthetic valve durability: incidence, mechanisms, predictors, and management of surgical and transcatheter valve degeneration. J Am Coll Cardiol 2017; 70(8): 1013–1028, https://doi.org/10.1016/j.jacc.2017.07.715.
  7. Kostyunin A.E., Yuzhalin A.E., Rezvova M.A., Ovcharenko E.A., Glushkova T.V., Kutikhin A.G. Degeneration of bioprosthetic heart valves: update 2020. J Am Heart Assoc 2020; 9(19): e018506, https://doi.org/10.1161/jaha.120.018506.
  8. Abbasi M., Barakat M., Dvir D., Azadani A. Detailed stress analysis of Edwards-SAPIEN and Medtronic CoreValve devices. Is leaflet stress comparable to surgical Carpentier-Edwards PERIMOUNT Magna bioprosthesis? Struct Heart 2019; 3(Suppl 1): 192, https://doi.org/10.1080/24748706.2019.1591103.
  9. Oveissi F., Naficy S., Lee A., Winlaw D.S., Dehghani F. Materials and manufacturing perspectives in engineering heart valves: a review. Mater Today Bio 2019; 5: 100038, https://doi.org/10.1016/j.mtbio.2019.100038.
  10. Bezuidenhout D., Williams D.F., Zilla P. Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices. Biomaterials 2015; 36: 6–25, https://doi.org/10.1016/j.biomaterials.2014.09.013.
  11. Kudryavtseva Yu.A. Bioprosthetic heart valves. From idea to clinical use. Kompleksnye problemy serdecno-sosudistyh zabolevanij 2015; 4: 6–16.
  12. Zhuravleva I.Y., Karpova E.V., Oparina L.A., Cabos N., Ksenofontov A.L., Zhuravleva A.S., Nichay N.R., Bogachev-Prokophiev A.V., Trofimov B.A., Karaskov A.M. Bioprosthetic xenopericardium preserved with di- and penta-epoxy compounds: molecular cross-linking mechanisms, surface features and mechanical properties. Patologiya krovoobrashcheniya i kardiokhirurgiya 2018; 22(3): 49–55, https://doi.org/10.21688/1681-3472-2018-3-56-68.
  13. Kostyunin A.E., Glushkova T.V. Expression of matrix metalloproteinases 1, 2, 9, 12 in xenogenic tissues of epoxy-crosslinked bioprosthetic heart valves explanted due to dysfunction. Rossijskij kardiologiceskij zurnal 2020; 25(10): 3978, https://doi.org/10.15829/1560-4071-2020-3978.
  14. Rotman O.M., Bianchi M., Ghosh R.P., Kovarovic B., Bluestein D. Principles of TAVR valve design, modelling, and testing. Expert Rev Med Devices 2018; 15(11): 771–791, https://doi.org/10.1080/17434440.2018.1536427.
  15. Martin C., Sun W. Simulation of long-term fatigue damage in bioprosthetic heart valves: effects of leaflet and stent elastic properties. Biomech Model Mechanobiol 2014; 13(4): 759–770, https://doi.org/10.1007/s10237-013-0532-x.
  16. Martin C., Sun W. Comparison of transcatheter aortic valve and surgical bioprosthetic valve durability: a fatigue simulation study. J Biomech 2015; 48(12): 3026–3034, https://doi.org/10.1016/j.jbiomech.2015.07.031.
  17. Zhou H., Wu L., Wu Q. Structural stability of novel composite heart valve prostheses — fatigue and wear performance. Biomed Pharmacother 2021; 136: 111288, https://doi.org/10.1016/j.biopha.2021.111288.
  18. Mohammadi H., Mequanint K. Prosthetic aortic heart valves: modeling and design. Med Eng Phys 2011; 33(2): 131–147, https://doi.org/10.1016/j.medengphy.2010.09.017.
  19. Praveen Kumar G., Mathew L. Three-dimensional computer-aided design-based geometric modeling of a new trileaflet aortic valve. Artif Organs 2010; 34(12): 1121–1124, https://doi.org/10.1111/j.1525-1594.2009.00973.x.
  20. Li K., Sun W. Simulated transcatheter aortic valve deformation: a parametric study on the impact of leaflet geometry on valve peak stress. Int J Numer Method Biomed Eng 2017; 33(3): e02814, https://doi.org/10.1002/cnm.2814.
  21. Hsu M.C., Kamensky D., Xu F., Kiendl J., Wang C., Wu M.C.H., Mineroff J., Reali A., Bazilevs Y., Sacks M.S. Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput Mech 2015; 55(6): 1211–1225, https://doi.org/10.1007/s00466-015-1166-x.
  22. Xu F., Morganti S., Zakerzadeh R., Kamensky D., Auricchio F., Reali A., Hughes T.J.R., Sacks M.S., Hsu M.C. A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid-structure interaction analysis. Int J Numer Method Biomed Eng 2018; 34(4): e2938, https://doi.org/10.1002/cnm.2938.
  23. Travaglino S., Murdock K., Tran A., Martin C., Liang L., Wang Y., Sun W. Computational optimization study of transcatheter aortic valve leaflet design using porcine and bovine leaflets. J Biomech Eng 2020; 142(1): 011007, https://doi.org/10.1115/1.4044244.
  24. Bokeriya L.A., Belal G. Methods for echocardiographic evaluation of aortic valve hemodynamics after prosthetics: methods and precautions. Kreativnaa kardiologia 2012; 6(1): 73–79.
  25. Ovcharenko E.A., Klyshnikov K.U., Yuzhalin A.E., Savrasov G.V., Glushkova T.V., Vasukov G.U., Nushtaev D.V., Kudryavtseva Y.A., Barbarash L.S. Comparison of xenopericardial patches of different origin and type of fixation implemented for TAVI. Int J Biomed Eng Technol 2017; 25(1): 44–59, https://doi.org/10.1504/ijbet.2017.10007484.
  26. Cuando-Espitia N., Sánchez-Arévalo F., Hernández-Cordero J. Mechanical assessment of bovine pericardium using Müeller matrix imaging, enhanced backscattering and digital image correlation analysis. Biomed Opt Express 2015; 6(8): 2953–2960, https://doi.org/10.1364/boe.6.002953.
  27. Mariscalco G., Mariani S., Bichi S., Biondi A., Blasio A., Borsani P., Corti F., De Chiara B., Gherli R., Leva C., Russo C.F., Tasca G., Vanelli P., Alfieri O., Antona C., Di Credico G., Esposito G., Gamba A., Martinelli L., Menicanti L., Paolini G., Beghi C. St. Jude Medical Trifecta aortic valve: results from a prospective regional multicentre registry. J Cardiothorac Surg 2015; 10: 169, https://doi.org/10.1186/s13019-015-0379-6.
  28. Permanyer E., Estigarribia A.J., Ysasi A., Herrero E., Semper O., Llorens R.St. Jude Medical Trifecta™ aortic valve perioperative performance in 200 patients. Interact Cardiovasc Thorac Surg 2013; 17(4): 669–672, https://doi.org/10.1093/icvts/ivt270.
  29. Mannam G., Mishra Y., Modi R., Gokhale A.G.K., Sethuratnam R., Pandey K., Malhotra R., Anand S., Borah A., Mukhopadhyay S., Shah D., Mahant T.S. Early hemodynamic performance of the Trifecta™ surgical bioprosthesis aortic valve in Indian patient population: 12 month outcomes of the EVEREST post-market study. J Cardiothorac Surg 2018; 13(1): 96, https://doi.org/10.1186/s13019-018-0783-9.
  30. Trifecta™ Valve with Glide™ Technology (GT) instructions for use. St. Jude Medical; 2016; URL: https://manuals.sjm.com/~/media/manuals/ product-manual-pdfs/e/1/e1157bdf- 2fb8-4567-81ef-10f620e79af9.pdf.
  31. Abbasi M., Barakat M.S., Dvir D., Azadani A.N. A non-invasive material characterization framework for bioprosthetic heart valves. Ann Biomed Eng 2019; 47(1): 97–112, https://doi.org/10.1007/s10439-018-02129-5.
  32. Rahmani B., Ghanbari H., Tzamtzis S., Burriesci G., Seifalian A.M. Polymeric heart valves. In: Encyclopedia of biophysics. Roberts G.C.K. (editor). Springer-Verlag Berlin Heidelberg; 2013; p. 1893–1900, https://doi.org/10.1007/978-3-642-16712-6_702.
  33. Powell S.K., Cruz R.L.J., Ross M.T., Woodruff M.A. Past, present, and future of soft-tissue prosthetics: advanced polymers and advanced manufacturing. Adv Mater 2020; 32(42): e2001122, https://doi.org/10.1002/adma.202001122.
  34. Motta S.E., Falk V., Hoerstrup S.P., Emmert M.Y. Polymeric valves appearing on the transcatheter horizon. Eur J Cardiothorac Surg 2021; 59(5): 1057–1058, https://doi.org/10.1093/ejcts/ezab089.
  35. Coulter F.B., Schaffner M., Faber J.A., Rafsanjani A., Smith R., Appa H., Zilla P., Bezuidenhout D., Studart A.R. Bioinspired heart valve prosthesis made by silicone additive manufacturing. Matter 2019; 1(1): 266–279, https://doi.org/10.1016/j.matt.2019.05.013.
  36. Ghanbari H., Viatge H., Kidane A.G., Burriesci G., Tavakoli M., Seifalian A.M. Polymeric heart valves: new materials, emerging hopes. Trends Biotechnol 2009; 27(6): 359–367, https://doi.org/10.1016/j.tibtech.2009.03.002.
  37. Stasiak J.R., Serrani M., Biral E., Taylor J.V., Zaman A.G., Jones S., Ness T., De Gaetano F., Costantino M.L., Bruno V.D., Suleiman S., Ascione R., Moggridge G.D. Design, development, testing at ISO standards and: in vivo feasibility study of a novel polymeric heart valve prosthesis. Biomater Sci 2020; 8(16): 4467–4480, https://doi.org/10.1039/d0bm00412j.
Onischenko P.S., Klyshnikov K.Yu., Ovcharenko Е.А., Barbarash L.S. An Algorithm for Automatic Generation and Evaluation of Leaflet Apparatus Models for Heart Valve Prostheses. Sovremennye tehnologii v medicine 2022; 14(4): 6, https://doi.org/10.17691/stm2022.14.4.01


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank