Today: Dec 30, 2024
RU / EN
Last update: Dec 27, 2024
Potential of Current Direct Mechanical Testing Methods in Assessing Intraoperative Samples of Aortic Aneurysm Caused by Uncontrolled Arterial Hypertension

Potential of Current Direct Mechanical Testing Methods in Assessing Intraoperative Samples of Aortic Aneurysm Caused by Uncontrolled Arterial Hypertension

Nikolenko V.N., Belov Y.V., Oganesyan M.V., Efremov Y.M., Rizaeva N.A., Vovkogon A.D., Sankov A.V., Gridin L.A., Timashev P.S., Bulygin K.V., Sankova M.V.
Key words: uncontrolled arterial hypertension; aortic arch aneurysm; direct mechanical testing methods; strength and elastic-deformative aorta characteristics; vascular wall stiffness; cardiovascular accident predictors.
2024, volume 16, issue 4, page 46.

Full text

html pdf
279
348

The aim of the study was to investigate the potential of direct mechanical testing methods in clinical practice to assess the strength and elastic-deformative characteristics of intraoperative samples of aortic arch aneurysm caused by uncontrolled arterial hypertension.

Materials and Methods. The study experimental material was the resected parts of the aortic aneurysm obtained during aneurysm replacement surgery in a patient with uncontrolled arterial hypertension. The direct mechanical testing methods such as instrumental indentation and uniaxial extension were used.

Results. It was shown that by the direct instrumental indentation it is possible to accurately assess and compare the stiffness of all three layers of the aortic wall. In this clinical case, the inner aorta layer was subject to the greatest atherosclerotic damage. In the media area, the values of this indicator were widely scattered, whereas the material was greatly dissected. By uniaxial extension method it is possible to obtain accurate parameters of the vascular wall strength, as well as to assess the stiffness, elasticity, and deformability of the intraoperatively resected aortic tissue. It was found that the aneurysm aortic wall, compared with the non-dilated aortic section, was characterized by a significantly lower strength in both longitudinal (by 4.25 times) and transverse (by 3.75 times) directions. In addition, aneurysm tissues demonstrated a significantly lower elasticity and deformability.

Conclusion. The study demonstrated the perspectives and options of using in clinical practice current methods of direct mechanical testing, which makes it possible to obtain more accurate indicators of the strength and elastic-deformative vascular characteristics, to clarify the pathophysiological mechanisms of cardiovascular accidents, and to justify the need for regular monitoring of vascular wall stiffness in clinical practice, in particular in patients with uncontrolled arterial hypertension.

  1. Maksimov S.A., Balanova Y.A., Shalnova S.A., Muromtseva G.A., Kapustina A.V., Drapkina O.M. Regional living conditions and the prevalence, awareness, treatment, control of hypertension at the individual level in Russia. BMC Public Health 2022; 22(1): 202, https://doi.org/10.1186/s12889-022-12645-8.
  2. Lu W., Pikhart H., Tamosiunas A., Kubinova R., Capkova N., Malyutina S., Pająk A., Bobak M. Prevalence, awareness, treatment and control of hypertension, diabetes and hypercholesterolemia, and associated risk factors in the Czech Republic, Russia, Poland and Lithuania: a cross-sectional study. BMC Public Health 2022; 22(1): 883, https://doi.org/10.1186/s12889-022-13260-3.
  3. Osmanov E.M., Manyakov R.R., Tuktamysheva L.M., Garaeva A.S. Gender and age features of the prevalence of hypertension in the population of a medium-urbanized city of central Russia. Probl Sotsialnoi Gig Zdravookhranenniiai Istor Med 2022; 30(5): 766–770, https://doi.org/10.32687/0869-866X-2022-30-5-766-770.
  4. Podzolkov V.I., Tarzimanova A.I., Georgadze Z.O. Modern principles of treatment of uncontrolled hypertension. Rational Pharmacotherapy in Cardiology 2019; 15(5): 736–741, https://doi.org/10.20996/1819-6446-2019-15-5-736-741.
  5. Romano S., Rigon G., Albrigi M., Tebaldi G., Sartorio A., Cristin L., Burrei G., Fava C., Minuz P. Hypertension, uncontrolled hypertension and resistant hypertension: prevalence, comorbidities and prescribed medications in 228,406 adults resident in urban areas. A population-based observational study. Intern Emerg Med 2023; 18(7): 1951–1959, https://doi.org/10.1007/s11739-023-03376-8.
  6. Hibino M., Otaki Y., Kobeissi E., Pan H., Hibino H., Taddese H., Majeed A., Verma S., Konta T., Yamagata K., Fujimoto S., Tsuruya K., Narita I., Kasahara M., Shibagaki Y., Iseki K., Moriyama T., Kondo M., Asahi K., Watanabe T., Watanabe T., Watanabe M., Aune D. Blood pressure, hypertension, and the risk of aortic dissection incidence and mortality: results from the J-SCH study, the UK Biobank study, and a meta-analysis of cohort studies. Circulation 2022; 145(9): 633–644, https://doi.org/10.1161/CIRCULATIONAHA.121.056546.
  7. Bento J.R., Meester J., Luyckx I., Peeters S., Verstraeten A., Loeys B. The genetics and typical traits of thoracic aortic aneurysm and dissection. Annu Rev Genomics Hum Genet 2022; 23: 223–253, https://doi.org/10.1146/annurev-genom-111521-104455.
  8. Acharya M.N., Mariscalco G. Surveillance for moderate-sized thoracic aortic aneurysms: equality is the goal. J Card Surg 2022; 37(4): 840–842, https://doi.org/10.1111/jocs.16174.
  9. Saeyeldin A.A., Velasquez C.A., Mahmood S.U.B., Brownstein A.J., Zafar M.A., Ziganshin B.A., Elefteriades J.A. Thoracic aortic aneurysm: unlocking the “silent killer” secrets. Gen Thorac Cardiovasc Surg 2019; 67(1): 1–11, https://doi.org/10.1007/s11748-017-0874-x.
  10. Ostberg N.P., Zafar M.A., Ziganshin B.A., Elefteriades J.A. The genetics of thoracic aortic aneurysms and dissection: a clinical perspective. Biomolecules 2020; 10(2): 182, https://doi.org/10.3390/biom10020182.
  11. Gouveia E., Melo R., Silva Duarte G., Lopes A., Alves M., Caldeira D., Fernandes E., Fernandes R., Mendes Pedro L. Incidence and prevalence of thoracic aortic aneurysms: a systematic review and meta-analysis of population-based studies. Semin Thorac Cardiovasc Surg 2022; 34(1): 1–16, https://doi.org/10.1053/j.semtcvs.2021.02.029.
  12. Lu H., Du W., Ren L., Hamblin M.H., Becker R.C., Chen Y.E., Fan Y. Vascular smooth muscle cells in aortic aneurysm: from genetics to mechanisms. J Am Heart Assoc 2021; 10(24): e023601, https://doi.org/10.1161/JAHA.121.023601.
  13. Anfinogenova N.D., Sinitsyn V.E., Kozlov B.N., Panfilov D.S., Popov S.V., Vrublevsky A.V., Chernyavsky A., Bergen T., Khovrin V.V., Ussov W.Y. Existing and emerging approaches to risk assessment in patients with ascending thoracic aortic dilatation. J Imaging 2022; 8(10): 280, https://doi.org/10.3390/jimaging8100280.
  14. Gosse P., Boulestreau R., Doublet J., Gaudissard J., Cremer A. Arterial stiffness (from monitoring of Qkd interval) predict the occurrence of cardiovascular events and total mortality. J Hum Hypertens 2023; 37(10): 907–912, https://doi.org/10.1038/s41371-022-00797-4.
  15. Chang G., Hu Y., Ge Q., Chu S., Avolio A., Zuo J. Arterial stiffness as a predictor of the index of atherosclerotic cardiovascular disease in hypertensive patients. Int J Environ Res Public Health 2023; 20(4): 2832, https://doi.org/10.3390/ijerph20042832.
  16. Acampa M., Bongiorno M., Lazzerini P.E., Catania C., Domenichelli C., Guideri F., Tassi R., Cartocci A., Martini G. Increased arterial stiffness is a predictor of delayed ischaemic stroke after subarachnoid haemorrhage. Heart Lung Circ 2021; 30(4): 525–530, https://doi.org/10.1016/j.hlc.2020.07.016.
  17. Zhang Y., Lacolley P., Protogerou A.D., Safar M.E. Arterial stiffness in hypertension and function of large arteries. Am J Hypertens 2020; 33(4): 291–296, https://doi.org/10.1093/ajh/hpz193.
  18. Zhang J.R., Zhou J. The detection and evaluation of vascular stiffness. Sheng Li Xue Bao 2022; 74(6): 894–902.
  19. Milan A., Zocaro G., Leone D., Tosello F., Buraioli I., Schiavone D., Veglio F. Current assessment of pulse wave velocity: comprehensive review of validation studies. J Hypertens 2019; 37(8): 1547–1557, https://doi.org/10.1097/HJH.0000000000002081.
  20. Badji A., Sabra D., Bherer L., Cohen-Adad J., Girouard H., Gauthier C.J. Arterial stiffness and brain integrity: a review of MRI findings. Ageing Res Rev 2019; 53: 100907, https://doi.org/10.1016/j.arr.2019.05.001.
  21. Liu F., Haeger C.M., Dieffenbach P.B., Sicard D., Chrobak I., Coronata A.M., Suárez Velandia M.M., Vitali S., Colas R.A., Norris P.C., Marinković A., Liu X., Ma J., Rose C.D., Lee S.J., Comhair S.A., Erzurum S.C., McDonald J.D., Serhan C.N., Walsh S.R., Tschumperlin D.J., Fredenburgh L.E. Distal vessel stiffening is an early and pivotal mechanobiological regulator of vascular remodeling and pulmonary hypertension. JCI Insight 2016; 1(8): e86987, https://doi.org/10.1172/jci.insight.86987.
  22. Fomkina O.A., Nikolenko V.N. Biomechanical parameters of the middle cerebral artery at its uniaxial longitudinal and transverse stretching. Astrahanskij medicinskij zhurnal 2012; 7(4): 253–255.
  23. Pierce G.L., Coutinho T.A., DuBose L.E., Donato A.J. Is it good to have a stiff aorta with aging? Causes and consequences. Physiology (Bethesda) 2022; 37(3): 154–173, https://doi.org/10.1152/physiol.00035.2021.
  24. Vachev A.N., Dmitriev O.V., Kozin I.I., Chernovalov D.A., Gryaznova D.A., Italyantsev A.Yu., Lukyanov A.A., Gureev A.D., Prozhoga M.G. Ascending aorta and hemiarch replacement without circulatory arrest for aortic aneurysm and local dissection. Kardiologiya i serdechno-sosudistaya khirurgiya 2020; 13(2): 151–156, https://doi.org/10.17116/kardio202013021151.
  25. Efremov Y.M., Shpichka A.I., Kotova S.L., Timashev P.S. Viscoelastic mapping of cells based on fast force volume and PeakForce Tapping. Soft Matter 2019; 15(27): 5455–5463, https://doi.org/10.1039/c9sm00711c.
  26. di Gioia C.R.T., Ascione A., Carletti R., Giordano C. Thoracic aorta: anatomy and pathology. Diagnostics (Basel) 2023; 13(13): 2166, https://doi.org/10.3390/diagnostics13132166.
  27. Yang T., Yuan X., Gao W., Lu M.J., Hu M.J., Sun H.S. Causal effect of hypertension and blood pressure on aortic diseases: evidence from Mendelian randomization. Hypertens Res 2023; 46(9): 2203–2212, https://doi.org/10.1038/s41440-023-01351-6.
  28. Belov Iu.V., Fedorov D.N., Taaev B.K., Daabul’ A.S. Specifics of histological structure of ascending aortic wall in aneurysm. Kardiologiya i serdechno-sosudistaya khirurgiya 2013; 6(2): 34–36.
Nikolenko V.N., Belov Y.V., Oganesyan M.V., Efremov Y.M., Rizaeva N.A., Vovkogon A.D., Sankov A.V., Gridin L.A., Timashev P.S., Bulygin K.V., Sankova M.V. Potential of Current Direct Mechanical Testing Methods in Assessing Intraoperative Samples of Aortic Aneurysm Caused by Uncontrolled Arterial Hypertension. Sovremennye tehnologii v medicine 2024; 16(4): 46, https://doi.org/10.17691/stm2024.16.4.05


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank