Today: Dec 22, 2024
RU / EN
Last update: Oct 30, 2024
The Analysis of Active Products of Spark Discharge Plasma Radiation Determining Biological Effects in Tissues

The Analysis of Active Products of Spark Discharge Plasma Radiation Determining Biological Effects in Tissues

Ivanova I.P., Trofimova S.V., Karpel Vel Leitner N., Аristova N.А., Arkhipova Е.V., Burkhina О.Е., Sysoeva V.А., Piskaryov I.M.
Key words: radicals, reactive species, spark discharge plasma radiation, UV spectra, IR spectra.
2012, issue 2, page 20.

Full text

pdf
0
2022

The aim of the investigation is to analyze active products of spark discharge plasma radiation determining biological effects in tissues, estimate the radiation intensity, identify the resulting products and determine their concentrations.

Materials and Methods. The radiation intensity of discharge was estimated by means of detecting 1.5% solution of potassium iodine. The possibility of OH and HO2 formation was analyzed by oxalic acid and mohr’s salt solutions. Hydrogen peroxide concentration was assessed by titanium ions test (λ=410 нм). And NO3- ion formation was studied by means of ion selective electrodes.

There was carried out chemical analytical and spectrophotometric analysis of products absorption over the range of λ=200–400 nm to identify the products forming and accumulating in liquid phase of discharge. The active products forming in gas phase of discharge were analyzed by Fourier infrared absorption spectra. pH was measured by device “Expert 001”. All the solutions were treated in discharge optimal conditions: the capacity of pulse capacitor C=3.3 nanofarad, ballast resistance R=10 МOhm, power supply voltage UPS=11 kV, pulse recurrence frequency — 10 Hz.

Results. Spark discharge plasma radiation initiates UV photon beam (2.5±0.3)⋅1015(cm2⋅s)-1, with energy density (2.0±0.3)⋅10-3J(cm2⋅s)-1, maximum radiation spectrum — 220 nm. Under discharge pH in water samples decreases, oxidizers and deoxidizers accumulate. There have been identified radicals HO2, initial yield — (1.2±0.3)⋅10-6mol(l⋅s)-1. Initial yield of acid residues ([H+] increase) — (5.8±1.6)⋅10-7mol/(l⋅s)-1, oxidizers (3.3±1.0)⋅10-6mol-equiv./(l⋅s)-1, deoxidizers (4.2±1.0)⋅10-7mol-equiv./(l⋅s)-1. The formation of nitro compounds containing CN, NH groups and organic compounds containing CH, CC groups has been proved. Nitrogen oxides and organic compounds make the main contribution to pH decrease.

  1. Rupf S., Lehmann A., Hannig M., Schafer B., Schubert A., Feldmann U., Schindler A. Killing of adherent oral microbes by a non-thermal atmospheric plasma jet. Journal of Medical Microbiology 2010; 59: 206–212. doi:10.1099/jmm.0.013714-0.
  2. Lopez Garcia J., Asadinezhad A., Pachernik J., Lehocky M., Junkar I., Humpolicek P., Saha P., Valasek P. Cell proliferation of HaCaT keratinocytes on collagen films modified by argon plasma treatment. Molecules 2010; 15; doi:10.3390/molecules15042845. р. 2845–2856.
  3. Ivanova I.P., Zaslavskaya M.I. Sovrem Tekhnol Med — Modern Technologies in Medicine 2009; 1: 28–31.
  4. Fridman A. Plasma Chemistry. Cambridge: Cambridge University Press; 2008; 1024 p. Internet: http:// www.cambridge.org/9780521847353.
  5. Ivanova I.P., Trofimova S.V., Piskarev I.M., Knyazev D.I., Timush A.V., Burkhina O.E., Litvinova L.G. Vestnik Nizhegorodskogo gosudarstvennogo universiteta im. N.I. Lobachevskogo — Herald of Nizhny Novgorod State University named after N.I. Lobachevsky 2011; 2(2): 190–195.
  6. Hickling A. Electrochemical processes in glow discharge at the gas-solution interface. Modern aspects of electrochemistry 1971; 6: 329–373.
  7. Denaro A.R. A model for glow discharge electrolysis. Electrochimica Acta 1976; 20: 669–673.
  8. Mazzocchin G.-A., Bontempelli G., Magno F. Glow discharge electrolysis on methanol. Electroanalytical Chemistry and Interfacial Electrochemistry 1973; 42(2): 243–252.
  9. Sen Gupta S.K., Singh R., Srivastava A.K. Chemical effects of anodic contact glow discharge electrolysis in aqueous formic acid solutions: formation of oxalic acid. Indian Journal of Chemistry 1995; 34A: 459–461.
  10. Aristova N.A., Piskarev I.M. Vspyshechnyy koronnyy elektricheskiy razryad kak istochnik khimicheski aktivnykh chastits. V kn.: Entsiklopediya nizkotemperaturnoy plazmy. Seriya B. T. XI-5 [Flare coronal discharge as the source of chemically reactive species. In: Encyclopedia of low temperature plasma. Series В. Т. XI-5]. Pod red. Lebe­deva Yu.A., Plate N.A., Fortova V.E. [Lebedev Yu.A., Plate N.A., Fortov V.E. (editors)]. Moscow: Izdatel'stvo YaNUS-K; 2006; p. 310–341.
  11. Kutepov A.M., Zakharov A.G., Maksimov A.I. Vakuumno-plazmennoe i plazmenno-rastvornoe modifitsirovanie polimernykh materialov [Vacuum-plasma and plasma-solution modification of polymer materials]. Moscow: Nauka; 2004. 496 p.
  12. . Spirov G.M., Luk’yanov N.B., Shlepkin S.I., Volkov A.A., Moiseenko A.N., Markevtsev I.M., Ivanova I.P., Zaslavskaya M.I. Ustroystvo dlya vozdeystviya na bioob”ekt [The bio-object effect device]. Patent RF №2358773. 2009.
  13. Gosudarstvennaya farmakopeya Rossiyskoy Federatsii [State Pharmacopeia of the Russian Federation]. Moscow: Izdatel’stvo Nauchnyy tsentr ekspertizy sredstv meditsinskogo primeneniya; 2008; 704 p.
  14. Belyaeva T.V. Analiticheskaya khimiya [Analytical Chemistry]. Saint Petersburg; 2004; 103 p.
  15. Sharlo G. Metody analiticheskoy khimii. Kolichestvennyy analiz neorganicheskikh soedineniy. Chast’ 2 [Methods of analytical chemistry. Qualitative analysis of inorganic compounds. Part 2]. Moscow: Khimiya; p. 1032.
  16. Vasil’ev A.V., Grinenko E.V., Shchukin A.O, Fedulina T.G. Infrakrasnaya spektroskopiya organicheskikh i prirodnykh soedineniy [Infrared spectroscopy of organic and natural compounds]. Saint Petersburg: GLTA; 2007; 30 p.
  17. Piskarev I.M. Zhurnal tekhnicheskoy fiziki — Applied Physics Journal 1999; 69(1): 58–63.
  18. Kon’kova T.V., Pochitalkina I.A., Liberman E.Yu. Kataliz v promyshlennosti — Catalysis in industry 2007; 3: 14–17.
  19. Vedeneev V.I., Gurvich L.V., Kondrat’ev V.N., Medvedev V.A., Frankevich E.L. Energii razryva khimicheskikh svyazey. Potentsialy ionizatsii i srodstvo k elektronu. Spravochnik [Energies of chemical bond opening. Ionization potentials and electron affinity. Reference guide]. Moscow: Izd. AN SSSR; 1962; 214 p.
  20. Okabe Kh. Fotokhimiya malykh molekul [Photochemistry of small molecules]. Moscow: Mir; 1981; 500 p.
  21. Anisimova N.A. Identifikatsiya organicheskikh soedineniy [Organic compounds identification]. Gorno-Altaisk: Izdatel’stvo Gorno-Altayskogo gosuniversiteta; 2009; 118 p.
  22. Vanin A.F., Chazov E.I. Biofizika — Biophysics 2011; 56(2): 304–315.
Ivanova I.P., Trofimova S.V., Karpel Vel Leitner N., Аristova N.А., Arkhipova Е.V., Burkhina О.Е., Sysoeva V.А., Piskaryov I.M. The Analysis of Active Products of Spark Discharge Plasma Radiation Determining Biological Effects in Tissues. Sovremennye tehnologii v medicine 2012; (2): 20


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank