Today: Jan 22, 2025
RU / EN
Last update: Dec 27, 2024
Antibody-cytokine Fusion Proteins: Production, Functionality and Application Prospects in Oncology

Antibody-cytokine Fusion Proteins: Production, Functionality and Application Prospects in Oncology

Kosobokova E.N., Kosorukov V.S., Baryshnikov A.Yu.
Key words: cytokines; antibodies; fusion proteins; antitumor drugs.
2013, volume 5, issue 4, page 102.

Full text

pdf
0
2334

In medicine cytokines play an important role as the immune response modulators. However, biologically active drug application in high doses in oncology is followed by a number of unfavorable side effects resulting in treatment cessation. Target therapy enables to increase the efficiency of cytokine usage, and therefore, reduce the drug doses.

The achievements in genetic engineering and biotechnology led to a growing number of new antibody-cytokine fusion proteins. Such hybrids can have the properties of all components and acquire advantages compared to proteins alone. For example, monoclonal antibodies specific to a particular tumor antigen being fused with cytokines (MAb–C) provide accumulation of cytokines in tumor microenvironment, increase antitumor effect of antibodies and enhancement of the immune response against a tumor. MAb–C with various specificity against a number of tumors have been created in the last twenty years. It was shown on animal models that such fusion proteins being accumulated around a tumor are capable to cause the considerable antitumor response, which in some cases results in complete tumor elimination. The present review describes data on existing models of antibody-cytokine fusion proteins, their technology and application prospects in oncology.

  1. Miyajima A., Kitamura T., Harada N., Yokota T., Arai K. Cytokine receptors and signal transduction. Annu Rev Immunol 1992; 10: 295–331.
  2. Cohen M.C., Cohen S. Cytokine function: a study in biologic diversity. Am J Clin Pathol 1996 May; 105(5): 589–598.
  3. Curfs J.H., Meis J.F., Hoogkamp-Korstanje J.A. A primer on cytokines: sources, receptors, effects, and inducers. Clin Microbiol Rev 1997 Oct; 10(4): 742–780.
  4. Ketlinskiy S.A., Simbirtsev A.S. Tsitokiny [Cytokine]. Moscow: Foliant; 2008. 552 p.
  5. Sun Q., Jones K., McClure B., Cambareri B., Zacharakis B., Iversen P.O., Stomski F., Woodcock J.M., Bagley C.J., D’Andrea R., Lopez A.F. Simultaneous antagonism of interleukin-5, granulocyte-macrophage colony-stimulating factor, and interleukin-3 stimulation of human eosinophils by targeting the common cytokine binding site of their receptors. Blood 1999; 94: 1943–1951.
  6. D’Andrea R.J., Gonda T.J. A model for assembly and activation of the GM-CSF, IL-3 and IL-5 receptors: insights from activated mutants of the common beta subunit. Exp Hematol 2000 Mar; 28(3): 231–243.
  7. Kotenko S.V., Pestka S. Jak-Stat signal transduction pathway through the eyes of cytokine class II receptor complexes. Oncogene 2000 May 15; 19(21): 2557–2565.
  8. Kim-Schulze S., Taback B., Kaufman H.L. Cytokine therapy for cancer. Surg Oncol Clin N Am 2007 Oct; 16(4): 793–818.
  9. Tayal V., Kalra B.S. Cytokines and anti-cytokines as therapeutics — an update. Eur J Pharmacol 2008 Jan 28; 579(1–3): 1–12.
  10. Leonard J.P., Sherman M.L., Fisher G.L., Buchanan L.J., Larsen G., Atkins M.B., Sosman J.A., Dutcher J.P., Vogelzang N.J., Ryan J.L. Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood 1997 Oct 1; 90(7): 2541–2548.
  11. Schwartz R.N., Stover L., Dutcher J. Managing toxicities of high-dose interleukin-2. Oncology (Williston Park) 2002 Nov; 16(11 Suppl 13): 11–20.
  12. Sleijfer S., Bannink M., Van Gool A.R., Kruit W.H., Stoter G. Side effects of interferon-alpha therapy. Pharm World Sci 2005 Dec; 27(6): 423–431.
  13. Den Otter W., Jacobs J.J., Battermann J.J., Hordijk G.J., Krastev Z., Moiseeva E.V., Stewart R.J., Ziekman P.G., Koten J.W. Local therapy of cancer with free IL-2. Cancer Immunol Immunothe 2008 Jul; 57(7): 931–950.
  14. Johansson A., Hamzah J., Ganss R. Intratumoral TNFα improves immunotherapy. Oncoimmunology 2012 Nov 1; 1(8): 1395–1397.
  15. Dranoff G. Cancer gene therapy: connecting basic research with clinical inquiry. J Clin Oncol 1998 Jul; 16(7): 2548–2556.
  16. Barar J, Omidi Y. Translational approaches towards cancer gene therapy: hurdles and hopes. Bioimpacts 2012; 2(3): 127–143.
  17. Hillman G.G., Slos P., Wang Y., Wright J.L., Layer A., De Meyer M., Yudelev M., Che M., Forman J.D. Tumor irradiation followed by intratumoral cytokine gene therapy for murine renal adenocarcinoma. Cancer Gene Ther 2004 Jan; 11(1): 61–72.
  18. Triozzi P.L., Allen K.O., Carlisle R.R., Craig M., LoBuglio A.F., Conry R.M. Phase I study of the intratumoral administration of recombinant canarypox viruses expressing B7.1 and interleukin 12 in patients with metastatic melanoma. Clin Cancer Res 2005 Jun 1; 11(11): 4168–4175.
  19. Aggarwal B.B., Gupta S.C., Kim J.H. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 2012 Jan 19; 119(3): 651–665.
  20. Weiner L.M., Dhodapkar M.V., Ferrone S. Monoclonal antibodies for cancer immunotherapy. Lancet 2009 Mar 21; 373(9668): 1033–1040.
  21. Weiner L.M., Murray J.C., Shuptrine C.W. Antibody-based immunotherapy of cancer. Cell 2012 Mar 16; 148(6): 1081–1084.
  22. Galluzzi L., Vacchelli E., Fridman W.H., Galon J., Sautes-Fridman C., Tartour E., Zucman-Rossi J., Zitvogel L., Kroemer G. Trial watch: monoclonal antibodies in cancer therapy. Oncoimmunology 2012 Jan 1; 1(1): 28–37.
  23. Shuptrine C.W., Surana R., Weiner L.M. Monoclonal antibodies for the treatment of cancer. Semin Cancer Biol 2012 Feb; 22(1): 3–13.
  24. Vacchelli E., Eggermont A., Galon J., Sautès-Fridman C., Zitvogel L., Kroemer G., Galluzzi L. Trial watch: monoclonal antibodies in cancer therapy. Oncoimmunology 2013 Jan 1; 2(1): e22789
  25. Reichert J.M. Which are the antibodies to watch in 2013? MAbs 2013 Jan–Feb; 5(1): 1–4.
  26. Ortiz-Sánchez E., Helguera G., Daniels T.R., Penichet M.L. Antibody-cytokine fusion proteins: applications in cancer therapy. Expert Opin Biol Ther 2008 May; 8(5): 609–632.
  27. Kontermann R.E. Antibody-cytokine fusion proteins. Arch Biochem Biophys 2012 Oct 15; 526(2): 194–205.
  28. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. 1975. J Immunol 2005 Mar 1; 174(5): 2453–2455.
  29. Nilsang S., Nehru V., Plieva F.M., Nandakumar K.S., Rakshit S.K., Holmdahl R., Mattiasson B., Kumar A. Three-dimensional culture for monoclonal antibody production by hybridoma cells immobilized in macroporous gel particles. Biotechnol Prog 2008 Sep–Oct; 24(5): 1122–1131.
  30. Dillman R.O. The history and rationale for monoclonal antibodies in the treatment of hematologic malignancy. Curr Pharm Biotechnol 2001 Dec; 2(4): 293–300.
  31. Shawler D.L., Bartholomew R.M., Smith L.M., Dillman R.O. Human immune response to multiple injections of murine monoclonal IgG. J Immunol 1985 Aug; 135(2): 1530–1535.
  32. Dillman R.O., Beauregard J.C., Jamieson M., Amox D., Halpern S.E. Toxicities associated with monoclonal antibody infusions in cancer patients. Mol Biother 1988; 1(2): 81–85.
  33. Maynard J., Georgiou G. Antibody engineering. Annu Rev Biomed Eng 2000; 2: 339–376.
  34. Scheinfeld N. A review of rituximab in cutaneous medicine. Dermatol Online J 2006 Jan 27; 12(1): 3.
  35. Barcellini W., Zanella A. Rituximab therapy for autoimmune haematological diseases. Eur J Intern Med 2011 Jun; 22(3): 220–229.
  36. Abdulla N.E., Ninan M.J., Markowitz A.B. Rituximab: current status as therapy for malignant and benign hematologic disorders. BioDrugs 2012 Apr 1; 26(2): 71–82.
  37. Nahta R., Esteva F.J. Herceptin: mechanisms of action and resistance. Cancer Lett 2006 Feb 8; 232(2): 123–138.
  38. Viani G.A., Afonso S.L., Stefano E.J., De Fendi L.I., Soares F.V. Adjuvant trastuzumab in the treatment of her-2-positive early breast cancer: a meta-analysis of published randomized trials. BMC Cancer 2007 Aug 8; 7: 153.
  39. Akbarzadeh-Sharbaf S., Yakhchali B., Minuchehr Z., Shokrgozar M.A., Zeinali S. In silico design, construction and cloning of Trastuzumab humanized monoclonal antibody: a possible biosimilar for Herceptin. Adv Biomed Res 2012; 1: 21.
  40. Green L.L. Antibody engineering via genetic engineering of the mouse: XenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. J Immunol Methods 1999 Dec 10; 231(1–2): 11–23.
  41. Coughlin M., Lou G., Martinez O., Masterman S.K., Olsen O.A., Moksa A.A., Farzan M., Babcook J.S., Prabhakar B.S. Generation and characterization of human monoclonal neutralizing antibodies with distinct binding and sequence features against SARS coronavirus using XenoMouse. Virology 2007 Apr 25; 361(1): 93–102.
  42. Jakobovits A., Amado R.G., Yang X., Roskos L., Schwab G. From XenoMouse technology to panitumumab, the first fully human antibody product from transgenic mice. Nat Biotechnol 2007 Oct; 25(10): 1134–1143.
  43. Holliger P., Hudson P.J. Engineered antibody fragments and the rise of single domains. Nat Biotechnol 2005 Sep; 23(9): 1126–1136.
  44. Albrecht H., DeNardo S.J. Recombinant antibodies: from the laboratory to the clinic. Cancer Biother Radiopharm 2006 Aug; 21(4): 285–304.
  45. Presta L. Antibody engineering for therapeutics. Curr Opin Struct Biol 2003 Aug; 13(4): 519–525.
  46. Babaei A., Zarkesh-Esfahani S.H., Gharagozloo M. Production of a recombinant anti-human CD4 single-chain variable-fragment antibody using phage display technology and its expression in Escherichia coli. J Microbiol Biotechnol 2011 May; 21(5): 529–535.
  47. Hairul Bahara N.H., Tye G.J., Choong Y.S., Ong E.B., Ismail A., Lim T.S. Phage display antibodies for diagnostic applications. Biologicals 2013 Jul; 41(4): 209–216. Epub 2013 May 3.
  48. Cruz H.J., Conradt H.S., Dunker R., Peixoto C.M., Cunha A.E., Thomaz M., Burger C., Dias E.M., Clemente J., Moreira J.L., Rieke E., Carrondo M.J. Process development of a recombinant antibody/interleukin-2 fusion protein expressed in protein-free medium by BHK cells. J Biotechnol 2002 Jun 26; 96(2): 169–183.
  49. Komarova T.V., Skulachev M.V., Zvereva A.S., Schwartz A.M., Dorokhov Y.L., Atabekov J.G. New viral vector for efficient production of target proteins in plants. Biochemistry (Mosc) 2006 Aug; 71(8): 846–850.
  50. Komarova T.V., Kosorukov V.S., Frolova O.Y., Petrunia I.V., Skrypnik K.A., Gleba Y.Y., Dorokhov Y.L. Plant-made trastuzumab (herceptin) inhibits HER2/Neu+ cell proliferation and retards tumor growth. PLoS One 2011 Mar 3; 6(3): e17541.
  51. Liao W., Lin J.X., Leonard W.J. IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr Opin Immunol 2011 Oct; 23(5): 598–604.
  52. Liao W., Lin J.X., Leonard W.J. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 2013 Jan 24; 38(1): 13–25.
  53. Antony G.K., Dudek A.Z. Interleukin 2 in cancer therapy. Curr Med Chem 2010; 17(29): 3297–32302.
  54. Harvill E.T., Fleming J.M., Morrison S.L. In vivo properties of an IgG3-IL-2 fusion protein. A general strategy for immune potentiation. J Immunol 1996 Oct 1; 157(7): 3165–3170.
  55. Liu S.J., Sher Y.P., Ting C.C., Liao K.W., Yu C.P., Tao M.H. Treatment of B-cell lymphoma with chimeric IgG and single-chain Fv antibody-interleukin-2 fusion proteins. Blood 1998 Sep 15; 92(6): 2103–2112.
  56. Penichet M.L., Dela Cruz J.S., Shin S.U., Morrison S.L. A recombinant IgG3-(IL-2) fusion protein for the treatment of human HER2/neu expressing tumors. Hum Antibodies 2001; 10(1): 43–49.
  57. Shi M., Xie Z., Feng J., Sun Y., Yu M., Shen B., Guo N. A recombinant anti-erbB2, scFv-Fc-IL-2 fusion protein retains antigen specificity and cytokine function. Biotechnol Lett 2003 May; 25(10): 815–819.
  58. Shi M., Zhang L., Gu H.T., Jiang F.Q., Qian L., Yu M., Chen G.J., Luo Q., Shen B.F., Guo N. Efficient growth inhibition of ErbB2-overexpressing tumor cells by anti-ErbB2 ScFv-Fc-IL-2 fusion protein in vitro and in vivo. Acta Pharmacol Sin 2007 Oct; 28(10): 1611–1620.
  59. Heuser C., Ganser M., Hombach A., Brand H., Denton G., Hanisch F.G., Abken H. An anti-MUC1-antibody-interleukin-2 fusion protein that activates resting NK cells to lysis of MUC1-positive tumour cells. Br J Cancer 2003 Sep 15; 89(6): 1130–1139.
  60. Heuser C., Guhlke S., Matthies A., Bender H., Barth S., Diehl V., Abken H., Hombach A. Anti-CD30-scFv-Fc-IL-2 antibody-cytokine fusion protein that induces resting NK cells to highly efficient cytolysis of Hodgkin's lymphoma derived tumour cells. Int J Cancer 2004 Jun 20; 110(3): 386–394.
  61. Gillies S.D., Lan Y., Williams S., Carr F., Forman S., Raubitschek A., Lo K.M. An anti-CD20-IL-2 immunocytokine is highly efficacious in a SCID mouse model of established human B lymphoma. Blood 2005 May 15; 105(10): 3972–3978.
  62. Yoon C., Johnston S.C., Tang J., Stahl M., Tobin J.F., Somers W.S. Charged residues dominate a unique interlocking topography in the heterodimeric cytokine interleukin-12. EMBO J 2000 Jul 17; 19(14): 3530–3541.
  63. Vignali D.A., Kuchroo V.K. IL-12 family cytokines: immunological playmakers. Nat Immunol 2012 Jul 19; 13(8): 722–728.
  64. Colombo M.P., Trinchieri G. Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev 2002 Apr; 13(2): 155–168.
  65. Lee P., Wang F., Kuniyoshi J., Rubio V., Stuges T., Groshen S., Gee C., Lau R., Jeffery G., Margolin K., Marty V., Weber J. Effects of interleukin-12 on the immune response to a multipeptide vaccine for resected metastatic melanoma. J Clin Oncol 2001; 19: 3836–3847.
  66. Lacy M.Q., Jacobus S., Blood E.A., Kay N.E., Rajkumar S.V., Greipp P.R. Phase II study of interleukin-12 for treatment of plateau phase multiple myeloma (E1A96): a trial of the Eastern Cooperative Oncology Group. Leuk Res 2009 Nov; 33(11): 1485–1489.
  67. Peng L.S., Penichet M.L., Morrison S.L. A single-chain IL-12 IgG3 antibody fusion protein retains antibody specificity and IL-12 bioactivity and demonstrates antitumor activity. J Immunol 1999 Jul 1; 163(1): 250–258.
  68. Helguera G., Rodríguez J.A., Daniels T.R., Penichet M.L. Long-term immunity elicited by antibody-cytokine fusion proteins protects against sequential challenge with murine mammary and colon malignancies. Cancer Immunol Immunother 2007 Sep; 56(9): 1507–1512.
  69. Gafner V., Trachsel E., Neri D. An engineered antibody-interleukin-12 fusion protein with enhanced tumor vascular targeting properties. Int J Cancer 2006 Nov 1; 119(9): 2205–2212.
  70. Lo K.M., Lan Y., Lauder S., Zhang J., Brunkhorst B., Qin G., Verma R., Courtenay-Luck N., Gillies S.D. huBC1-IL12, an immunocytokine which targets EDB-containing oncofetal fibronectin in tumors and tumor vasculature, shows potent anti-tumor activity in human tumor models. Cancer Immunol Immunother 2007 Apr; 56(4): 447–457.
  71. Heuser C., Diehl V., Abken H., Hombach A. Anti-CD30-IL-12 antibody-cytokine fusion protein that induces IFN-gamma secretion of T cells and NK cell-mediated lysis of Hodgkin's lymphoma-derived tumor cells. Int J Cancer 2003 Sep 10; 106(4): 545–552.
  72. Makabe K., Asano R., Ito T., Tsumoto K., Kudo T., Kumagai I. Tumor-directed lymphocyte-activating cytokines: refolding-based preparation of recombinant human interleukin-12 and an antibody variable domain-fused protein by additive-introduced stepwise dialysis. Biochem Biophys Res Commun 2005 Mar 4; 328(1): 98–105.
  73. Rudman S.M., Jameson M.B., McKeage M.J., Savage P., Jodrell D.I., Harries M., Acton G., Erlandsson F., Spicer J.F. A phase 1 study of AS1409, a novel antibody-cytokine fusion protein, in patients with malignant melanoma or renal cell carcinoma. Clin Cancer Res 2011 Apr 1; 17(7): 1998–2005.
  74. Armitage J.O. Emerging applications of recombinant human granulocyte-macrophage colony-stimulating factor. Blood 1998 Dec 15; 92(12): 4491–4508.
  75. Itälä M., Pelliniemi T.T., Remes K., Vanhatalo S., Vainio O. Long-term treatment with GM-CSF in patients with chronic lymphocytic leukemia and recurrent neutropenic infections. Leuk Lymphoma 1998 Dec; 32(1–2): 165–174.
  76. Ravaud A., Chevreau C., Cany L., Houyau P., Dohollou N., Roché H., Soubeyran P., Bonichon F., Mihura J., Eghbali H., Tabah I., Bui B.N. Granulocyte-macrophage colony-stimulating factor in patients with neutropenic fever is potent after low-risk but not after high-risk neutropenic chemotherapy regimens: results of a randomized phase III trial. J Clin Oncol 1998 Sep; 16(9): 2930–2936.
  77. Polovinkina V.S., Kosorukov V.S. Rekombinantnyy chGM-KSF v onkologii [Recombinant hGM-CSF in antitumor therapy]. Rossiyskiy bioterapevticheskiy zhurnal — Russian Biotherapy Journal 2009; 8(1): 29–39.
  78. Ruef C., Coleman D.L. GM-CSF and G-CSF: cytokines in clinical application. Schweiz Med Wochenschr 1991 Mar 23; 121(12): 397–412.
  79. Stern A.C., Jones T.C. The side-effect profile of GM-CSF. Infection 1992; 20 Suppl 2:124–127.
  80. Dreier T., Lode H.N., Xiang R., Dolman C.S., Reisfeld R.A. Kang A.S. Recombinant immunocytokines targeting the mouse transferrin receptor: construction and biological activities. Bioconjug Chem 1998 Jul–Aug; 9(4): 482–489.
  81. Albertini M.R., Hank J.A., Gadbaw B., Kostlevy J., Haldeman J., Schalch H., Gan J., Kim K., Eickhoff J., Gillies S.D., Sondel P.M. Phase II trial of hu14.18-IL2 for patients with metastatic melanoma. Cancer Immunol Immunother 2012 Dec; 61(12): 2261–2271.
  82. Yu A.L., Gilman A.L., Ozkaynak M.F., London W.B., Kreissman S.G., Chen H.X., Smith M., Anderson B., Villablanca J.G., Matthay K.K., Shimada H., Grupp S.A., Seeger R., Reynolds C.P., Buxton A., Reisfeld R.A., Gillies S.D., Cohn S.L., Maris J.M., Sondel P.M. Children’s oncology group anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 2010 Sep 30; 363(14): 1324–1334.
  83. Hornick J.L., Khawli L.A., Hu P., Lynch M., Anderson P.M., Epstein A.L. Chimeric CLL-1 antibody fusion proteins containing granulocyte-macrophage colony-stimulating factor or interleukin-2 with specificity for B-cell malignancies exhibit enhanced effector functions while retaining tumor targeting properties. Blood 1997 Jun 15; 89(12): 4437–4447.
  84. Kaspar M., Trachsel E., Neri D. The antibody-mediated targeted delivery of interleukin-15 and GM-CSF to the tumor neovasculature inhibits tumor growth and metastasis. Cancer Res 2007 May 15; 67(10): 4940–4948.
  85. Dela Cruz J.S., Trinh K.R., Morrison S.L., Penichet M.L. Recombinant anti-human HER2/neu IgG3-(GM-CSF) fusion protein retains antigen specificity and cytokine function and demonstrates antitumor activity. J Immunol 2000 Nov 1; 165(9): 5112–5121.
  86. Bazzoni F., Beutler B. The tumor necrosis factor ligand and receptor families. N Engl J Med 1996; 334: 1717–1725.
  87. Locksley R.M., Killeen N., Lenardo M.J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001; 104: 487–501.
  88. van Horssen R., Ten Hagen T.L., Eggermont A.M. TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist 2006 Apr; 11(4): 397–408.
  89. Borsi L., Balza E., Carnemolla B., Sassi F., Castellani P., Berndt A., Kosmehl H., Biro A., Siri A., Orecchia P., Grassi J., Neri D., Zardi L. Selective targeted delivery of TNFalpha to tumor blood vessels. Blood 2003 Dec 15; 102(13): 4384–4392.
  90. Papadia F., Basso V., Patuzzo R., Maurichi A., Di Florio A., Zardi L., Ventura E., González-Iglesias R., Lovato V., Giovannoni L., Tasciotti A., Neri D., Santinami M., Menssen H.D., De Cian F. Isolated limb perfusion with the tumor-targeting human monoclonal antibody-cytokine fusion protein L19-TNF plus melphalan and mild hyperthermia in patients with locally advanced extremity melanoma. J Surg Oncol 2013 Feb; 107(2): 173–179.
  91. Spitaleri G., Berardi R., Pierantoni C., De Pas T., Noberasco C., Libbra C., González-Iglesias R., Giovannoni L., Tasciotti A., Neri D., Menssen H.D., de Braud F. Phase I/II study of the tumour-targeting human monoclonal antibody-cytokine fusion protein L19-TNF in patients with advanced solid tumours. J Cancer Res Clin Oncol 2013 Mar; 139(3): 447–455.
  92. Liebau C., Baltzer A.W., Schmidt S., Roesel C., Karreman C., Prisack J.B., Bojar H., Merk H. Interleukin-12 and interleukin-18 induce indoleamine 2,3-dioxygenase (IDO) activity in human osteosarcoma cell lines independently from interferon-gamma. Anticancer Res 2002 Mar–Apr; 22(2A): 931–936.
  93. Khawli L.A., Hu P., Epstein A.L. Cytokine, chemokine, and co-stimulatory fusion proteins for the immunotherapy of solid tumors. Handb Exp Pharmacol 2008; (181): 291–328.
  94. Wilke C.M., Wei S., Wang L., Kryczek I., Kao J., Zou W. Dual biological effects of the cytokines interleukin-10 and interferon-&gamma. Cancer Immunol Immunother 2011 Nov; 60(11): 1529–1541.
  95. Peng R.Q., Ding Y., Zhang X., Liao Y., Zheng L.M., Zhang X.S. A pilot study of paclitaxel combined with gemcitabine followed by interleukin-2 and granulocyte macrophage colony-stimulating factor for patients with metastatic melanoma. Cancer Biol Ther 2012 Dec 1; 13(14): 1443–1448.
  96. Hombach A.A., Abken H. Targeting two co-operating cytokines efficiently shapes immune responses. Oncoimmunology 2013 Mar 1; 2(3): e23205.
  97. Schanzer J.M., Baeuerle P.A., Dreier T., Kufer P. A human cytokine/single-chain antibody fusion protein for simultaneous delivery of GM-CSF and IL-2 to Ep-CAM overexpressing tumor cells. Cancer Immun 2006 Feb 17; 6: 4.
  98. Schanzer J.M., Fichtner I., Baeuerle P.A., Kufer P. Antitumor activity of a dual cytokine/single-chain antibody fusion protein for simultaneous delivery of GM-CSF and IL-2 to Ep-CAM expressing tumor cells. J Immunother 2006 Sep–Oct; 29(5): 477–488.
  99. Helguera G., Rodriguez J.A., Penichet M.L. Cytokines fused to antibodies and their combinations as therapeutic agents against different peritoneal HER2/neu expressing tumors. Mol Cancer Ther 2006 Apr; 5(4): 1029–1040.
  100. Halin C., Gafner V., Villani M.E., Borsi L., Berndt A., Kosmehl H., Zardi L., Neri D. Synergistic therapeutic effects of a tumor targeting antibody fragment, fused to interleukin 12 and to tumor necrosis factor alpha. Cancer Res 2003 Jun 15; 63(12): 3202–3210.
  101. Gillies S.D., Lan Y., Brunkhorst B., Wong W.K., Li Y., Lo K.M. Bi-functional cytokine fusion proteins for gene therapy and antibody-targeted treatment of cancer. Cancer Immunol Immunother 2002 Oct; 51(8):449–460.
  102. Jahn T., Zuther M., Friedrichs B., Heuser C., Guhlke S., Abken H., Hombach A.A. An IL12-IL2-antibody fusion protein targeting Hodgkin’s lymphoma cells potentiates activation of NK and T cells for an anti-tumor attack. PLoS One 2012; 7(9): e44482.
Kosobokova E.N., Kosorukov V.S., Baryshnikov A.Yu. Antibody-cytokine Fusion Proteins: Production, Functionality and Application Prospects in Oncology. Sovremennye tehnologii v medicine 2013; 5(4): 102


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank