Today: Jan 21, 2025
RU / EN
Last update: Dec 27, 2024
Cerebral Infrared Oximetry in Intracranial Hemorrhage

Cerebral Infrared Oximetry in Intracranial Hemorrhage

Trofimov А.О., Kalentiev G.V., Voennov О.V.
Key words: cerebral infrared oximetry; craniocerebral injury; hemorrhagic stroke.
2014, volume 6, issue 1, page 110.

Full text

html pdf
1750
2199

There have been presented up-to-date data on cerebral infrared oximetry application in intracranial hemorrhage. The principles of the technique enabling to perform noninvasive monitoring of cerebral tissue oxygenation have been given. There has been shown the comparability of cerebral oximetry and invasive assessment techniques of cerebral tissue saturation, jugular oximetry and cerebral microcirculation. Some systems for oxygen status determination have been presented. Special attention has been paid to the use of coefficients and indices of cerebral infrared oximetry to assess functional state of cerebral microvasculature and cerebral autoregulation.

There have been described prospects for further development of cerebral oximetry as a part of many-component monitoring in craniocerebral injury and hemorrhagic strokes.

  1. Jobsis F.F. Non-invasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 1977(4323); 198: 1264–1267, http://dx.doi.org/10.1126/science.929199.
  2. Gersten A., Perle J., Raz A., Fried R. Probing brain oxygenation with near infrared spectroscopy. NeuroQuantology 2009; 7(2): 258–266, http://dx.doi.org/10.14704/nq.2009.7.2.229.
  3. Dylst D., De Deyne C.S., Weyns F., Jans F., Heylen R. Monitoring of absolute cerebral oxygen saturation during craniotomy for acute intracerebral bleeding. Eur J Anaesthesiol 2009; 26(Suppl 45): 5–6.
  4. Cutini S., Moro S.B., Bisconti S. Functional near infrared optical imaging in cognitive neuroscience: an introductory review. J Near Infrared Spectrosc 2012; 20: 75–92, http://dx.doi.org/10.1255/jnirs.969.
  5. Highton D., Elwell C., Smith M. Noninvasive cerebral oximetry: is there light at the end of the tunnel? Curr Opin Anaesthesiol 2010; 23(5): 576–581.
  6. Matskeplishvili M.T. Tserebral’naya oksimetriya v kompleksnom neinvazivnom monitoringe tserebral’nykh funktsiy u bol’nykh v ostroy stadii polusharnogo insul’ta. Avtoref. dis. ... kand. med. nauk [Cerebral oximetry in a complex noninvasive monitoring of cerebral functions in patients with acute hemispheric stroke. Abstract for Dissertation for the degree of Candidate of Medical Science]. Moscow; 2012.
  7. Bauernfeind G., Leeb R., Wriessnegger S.C., Pfurtscheller G. Development, set-up and first results for a one-channel near-infrared spectroscopy system. Biomed Tech (Berl) 2008; 53(1): 36–43, http://dx.doi.org/10.1515/BMT.2008.005.
  8. Lazarev V.V. Tserebral’naya oksimetriya i neyromonitoring v diagnostike vtorichnykh povrezhdeniy golovnogo mozga posle vnutricherepnykh krovoizliyaniy. Avtoref. dis. ... kand. med. nauk [Cerebral oximetry and neuromonitoring in diagnostics of secondary brain injuries after intracranial hemorrhage. Abstract for Dissertation for the degree of Candidate of Medical Science]. Moscow; 2004.
  9. Abdelnour A.F., Huppert T. Real-time imaging of human brain function by near-infrared spectroscopy using an adaptive general linear model. NeuroImage 2009; 46(1): 133–143, http://dx.doi.org/10.1016/j.neuroimage.2009.01.033.
  10. Rodriguez A., Lisboa T., Martin-Loeches I., Díaz E., Trefler S., Restrepo M.I., Rello J. Mortality and regional oxygen saturation index in septic shock patients: a pilot study. J Trauma 2011; 70(5): 1145–1152, http://dx.doi.org/10.1097/TA.0b013e318216f72c.
  11. Komiyama T., Quaresima V., Shigematsu H., Ferrari M. Comparison of two spatially resolved near-infrared photometers in the detection of tissue oxygen saturation: poor reliability at very low oxygen saturation. Clin Sci (Lond) 2001; 101(6): 715–718.
  12. De Backer D., Ospina-Tascon G., Salgado D., Favory R., Creteur J., Vincent J.L. Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med 2010; 36(11): 1813–1825, http://dx.doi.org/10.1007/s00134-010-2005-3.
  13. Durduran T., Choe R., Baker W.B., Yodh A.G. Diffuse optics for tissue monitoring and tomography. Rep Prog Phys 2010: 73: 076701, http://dx.doi.org/10.1088/0034-4885/73/7/076701.
  14. Toet M.C., Lemmers P.M.A. Brain monitoring in neonates. Early Hum Dev 2009; 85(2): 77–84, http://dx.doi.org/10.1016/j.earlhumdev.2008.11.007.
  15. Kleinschmidt A., Obrig H., Requardt M., Merboldt K.D., Dirnagl U., Villringer A., Frahm J. Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy. J Cereb Blood Flow Metab 1996; 16(5): 817–826, http://dx.doi.org/10.1097/00004647-199609000-00006.
  16. Quaresima V., Bisconti S., Ferrari M. A brief review on the use of functional near-infrared spectroscopy (fNIRS) for language imaging studies in human newborns and adults. Brain Lang 2012; 121(2): 79–89, http://dx.doi.org/10.1016/j.bandl.2011.03.009.
  17. Moerman A., Wouters P. Near-infrared spectroscopy monitoring in contemporary anesthesia and critical care. Acta Anaesthesiol Belg 2010; 61(4): 185–194.
  18. Drayna P.C., Abramo T.J., Estrada C. Near-infrared spectroscopy in the critical setting. Pediatr Emerg Care 2011; 27(5): 432–439, http://dx.doi.org/10.1097/PEC.0b013e3182188442.
  19. Zweifel C., Castellani G., Czosnyka M., Helmy A., Manktelow A., Carrera E., et al. Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients. J Neurotrauma 2010; 27: 1951–1958.
  20. Tachtsidis I., Tisdall M., Pritchard C., Leung T.S., Ghosh A., Elwell C.E., Smith M. Analysis of the changes in the oxidation of brain tissue cytochrome-c-oxidase in traumatic brain injury patients during hypercapnoea: a broadband NIRS study. Oxygen Transport to Tissue XXXII. Adv Exp Med Biol 2011; 701: 9–14, http://dx.doi.org/10.1007/978-1-4419-7756-4_2.
  21. Diedler J., Zweifel C., Budohoski K. Assessment of cerebrovascular reactivity using THx depends on power of slow oscillations. In: 14th International Conference Intracranial Pressure and Brain Monitoring; 2010 Sept 12–16. Tbingen, Germany; 2010; p. 145–146.
  22. Weerakkody R., Czosnyka M., Zweifel C., Castellani G., Smielewski P., Brady K., et al. Near infrared spectroscopy as possible non-invasive monitor of slow vasogenic ICP waves. Intracranial Pressure and Brain Monitoring XIV. Acta Neurochirurgica Supplementum 2012; 114: 181–185, http://dx.doi.org/10.1007/978-3-7091-0956-4_35.
  23. Mutoh T., Ishikawa T., Suzuki A., et al. Continuous cardiac output and near-infrared spectroscopy monitoring to assist in management of symptomatic cerebral vasospasm after subarachnoid hemorrhage. Neurocrit Care 2010; 13(3): 331–338.
  24. Heringlake M., Garbers C., Kabler J., Anderson I., Heinze H., Schon J., et al. Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery. Anesthesiology 2011; 114: 58–69, http://dx.doi.org/10.1097/ALN.0b013e3181fef34e.
  25. Budohoski K., Diedler J., Zweifel C. Comparison of changes in brain tissue oxygenation, tissue oxygen index and tissue hemoglobin index in response to transient changes in cerebral hemodynamics In: 14th International Conference Intracranial Pressure and Brain Monitoring; 2010 Sept 12–16. Tbingen, Germany; 2010; p. 148.
  26. MacLeod D. Simultaneous comparison of FORE-SIGHT and INVOS cerebral oximeters to jugular bulb and arterial CO-oximetry measurements in healthy volunteers. Anesth Analg 2009; 108(SCA Suppl): 1–104.
  27. Budohoski K., Czosnyka M., Smielewski P., Varsos G.V., Kasprowicz M., Brady K.M. Cerebral autoregulation after subarachnoid haemorrhage: comparison of three methods. J Cereb Blood Flow Metab 2013 Mar; 33(3): 449–456, http://dx.doi.org/10.1038/jcbfm.2012.189.
  28. Steiner L., Pfister D., Strebel S., Radolovich D., Smielewski P., Czosnyka M. Near-infrared spectroscopy can monitor dynamic cerebral autoregulation in adults. Neurocrit Care 2009; 10(1): 122–128, http://dx.doi.org/10.1007/s12028-008-9140-5.
  29. Diedler J., Zweifel C., Budohoski K., Kasprowicz M., Sorrentino E., Haubrich C. The limitations of near-infrared spectroscopy to assess cerebrovascular reactivity: the role of slow frequency oscillations. Anesth Analg 2011 Oct; 113(4): 849–8457, http://dx.doi.org/10.1213/ANE.0b013e3182285dc0.
  30. Highton D., Panovska-Griffiths J., Ghosh A., Tachtsidis I., Banaji M., Elwell C., Smith M. Modelling cerebrovascular reactivity: a novel near-infrared biomarker of cerebral autoregulation? Oxygen Transport to Tissue XXXIV. Advances in Experimental Medicine and Biology 2013; 765: 87–93, http://dx.doi.org/10.1007/978-1-4614-4989-8_13.
  31. Kim M., Durduran T., Frangos S., Edlow B.L., Buckley E.M., Moss H.E., et al. Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults. Neurocrit Care 2010 Apr; 12(2): 173–180, http://dx.doi.org/10.1007/s12028-009-9305-x.
  32. Zweifel C., Castellani C. Non-invasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head injured patients. In: 14th International Conference Intracranial Pressure and Brain Monitoring; 2010 Sept 12–16. Tbingen, Germany; 2010; p. 48–49.
  33. Gupta C.N., Palaniappan R. Novel analysis techniques for a brain biometric system. Int J Medical Engineering and Informatics 2008; 1(2): 266–273.
  34. Zweifel C., Castellani G., Czosnyka M. Continuous assessment of cerebral autoregulation with near infrared spectroscopy in adults after subarachnoid hemorrhage. In: 14th International Conference Intracranial Pressure and Brain Monitoring; 2010 Sept 12–16. Tbingen, Germany; 2010; p. 194–195.
  35. Lemm S., Dickhaus T., Blankertz B., Müller K.R. Introduction to machine learning for brain imaging. NeuroImage 2011; 56(2): 387–399, http://dx.doi.org/10.1016/j.neuroimage.2010.11.004.
  36. Blankertz B., Dornhege G., Krauledat M., Müller K.R., Curio G. The non-invasive Berlin Brain–Computer Interface: fast acquisition of effective performance in untrained subjects. NeuroImage 2007; 37(2): 539–550, http://dx.doi.org/10.1016/j.neuroimage.2007.01.051.
  37. Multidetector computed tomography in cerebrovascular disease. Miles K.A., Eastwood J.D., König M. (eds). London: Informa UK; 2007; 192 p.
  38. Taussky P., O’Neal B., Daugherty W.P., Luke S., Thorpe D., Pooley R.A., et al. Validation of frontal near-infrared spectroscopy as noninvasive bedside monitoring for regional cerebral blood flow in brain-injured patients. Neurosurg Focus 2012; 32(2): e2, http://dx.doi.org/10.3171/2011.12.FOCUS11280.
  39. Brady K., Joshi B., Zweifel C., Smielewski P., Czosnyka M., Easley R.B., Hogue C.W.Jr. Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass. Stroke 2010; 41(9): 1951–1956, http://dx.doi.org/10.1161/STROKEAHA.109.575159.
  40. Orihuela-Espina F., Leff D.R., James D.R.C., Darzi A.W., Yang G.Z. Quality control and assurance in functional near infrared spectroscopy (fNIRS) experimentation. Phys Med Biol 2010; 55(13): 3701–3724, http://dx.doi.org/10.1088/0031-9155/55/13/009.
  41. Takeuchi M., Hori E., Takamoto K., Tran A.H., Satoru K., Ishikawa A., et al. Brain cortical mapping by simultaneous recording of functional near infrared spectroscopy and electroencephalograms from the whole brain during right median nerve stimulation. Brain Topogr 2009; 22(3): 197–214, http://dx.doi.org/10.1007/s10548-009-0109-2.
  42. Ou W., Nissilä I., Radhakrishnan H., Boas D.A., Hämäläinen M.S., Franceschini M.A. Study of neurovascular coupling in humans via simultaneous magnetoencephalography and diffuse optical imaging acquisition. NeuroImage 2009; 46(3): 624–632, http://dx.doi.org/10.1016/j.neuroimage.2009.03.008.
  43. MacLeod D., Ikeda K., White W. Relationship of cerebral oximetry measured hemoglobin per volume of tissue to arterial blood hemoglobin. Anesth Analg 2008; 106: S–120.
  44. Trofimov A.O., Yur’ev M.Yu., Voennov O.V. Mozgovoy krovotok i tserebral’naya oksigenatsiya u patsientov s cherepno-mozgovoy travmoy. Sopostavlenie dannykh perfuzionnoy komp’yuternoy tomografii i tserebral’noy infrakrasnoy spektroskopii [Cerebral blood flow and cerebral oxygenation in patients with craniocerebral injury. Comparison of perfusion computed tomography and cerebral infrared spectroscopy data]. Ukrainskiy neyrokhirurgicheskiy zhurnal — Ukraine Neurosurgery Journal 2013; 1: 40–45.
  45. Wolf M., Ferrari M., Quaresima V. Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. J Biomed Opt 2007; 12(6): 062104, http://dx.doi.org/10.1117/1.2804899.
  46. Leal-Noval S., Cayuela A., Arellano-Orden V., Marín-Caballos A., Padilla V., Ferrändiz-Millón C., Corcia Y., et al. Invasive and noninvasive assessment of cerebral oxygenation in patients with severe traumatic brain injury. Intensive Care Med 2010; 36: 1309–1317, http://dx.doi.org/10.1007/s00134-010-1920-7.
  47. Trofimov A.O., Kalentiev G.V., Aleynikov A.V. Ispol’zovanie tserebral’noy oksimetrii v ostrom periode tyazheloy politravmy [The use of cerebral oximetry in acute period of severe polytrauma]. Sovrem Technol Med — Modern Technologies in Medicine 2012; 4: 64–67.
  48. Smith M. Shedding light on the adult brain: a review of the clinical applications of near-infrared spectroscopy. Phil Trans R Soc A 2011; 36: 4452–4469, http://dx.doi.org/10.1098/rsta.2011.0242.
  49. Ferrari M., Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage 2012, http://dx.doi.org/10.1016/j.neuroimage.2012.03.049.
  50. Herrmann M.J., Huter T., Plichta M.M., Ehlis A.C., Alpers G.W., Mhlberger A., Fallgatter A.J. Enhancement of activity of the primary visual cortex during processing of emotional stimuli as measured with event-related functional near-infrared spectroscopy and event-related potentials. Hum Brain Mapp 2008; 29(1): 28–35, http://dx.doi.org/10.1002/hbm.20368.
  51. Budohoski K., Zweifel C., Kasprowicz M., Sorrentino E., Diedler J., Brady K.M., et al. What comes first? The dynamics of cerebral oxygenation and blood flow in response to changes in arterial pressure and intracranial pressure after head injury. Br J Anaesth 2012 Jan; 108(1): 89–99, http://dx.doi.org/10.1093/bja/aer324.
  52. Constantoyannis C., Sakellaropoulos G.C., Kagadis G.C., Katsakiori P.F., Maraziotis T., Nikiforidis G.C., Papadakis N. Transcranial cerebral oximetry and transcranial doppler sonography in patients with ruptured cerebral aneurysms and delayed cerebral vasospasm. Med Sci Monit 2007; 13(10): MT35–40.
  53. Coyle S., Ward T., Markham C., McDarby G. On the suitability of near-infrared (NIR) systems for next-generation brain-computer interfaces. Physiol Meas 2004; 25(4): 815–822.
  54. Hirshfield L.M., Chauncey K., Gulotta R., Girouard A., Solovey E.T., Jacob R.J.K., Sassaroli A., Fantini S. Combining electroencephalograph and functional near infrared spectroscopy to explore users’ mental workload. Foundations of Augmented Cognition. Neuroergonomics and Operational Neuroscience. Lecture Notes in Computer Science 2009; 5638: 239–247, http://dx.doi.org/10.1007/978-3-642-02812-0_28.
  55. Hermes D., Vansteensel M.J., Albers A.M., Bleichner M.G., Benedictus M.R., Mendez Orellana C., Aarnoutse E.J., Ramsey N.F. Functional MRI-based identification of brain areas involved in motor imagery for implantable brain-computer interfaces. J Neural Eng 2011; 8(2): 025007, http://dx.doi.org/10.1088/1741-2560/8/2/025007.
  56. Kanoh S., Murayama Y.M., Miyamoto K., Yoshinobu T., Kawashima R. A NIRS based brain–computer interface system during motor imagery: system development and online feedback training. Conf Proc IEEE Eng Med Biol Soc 2009; 2009: 594–547, http://dx.doi.org/10.1109/IEMBS.2009.5333710.
  57. Nagaoka T., Sakatani K., Awano T., Yokose N., Hoshino T., Murata Y., et al. Development of a new rehabilitation system based on a brain-computer interface using near-infrared spectroscopy. Oxygen Transport to Tissue XXXI. Advances in Experimental Medicine and Biology 2010; 662: 497–503, http://dx.doi.org/10.1007/978-1-4419-1241-1_72.
  58. Wilson J., Palaniappan R. Analogue mouse pointer control via an online steady state visual evoked potential (SSVEP) brain–computer interface. Journal of Neural Engineering 2011; 8(2): 025026, http://dx.doi.org/10.1088/1741-2560/8/2/025026.
  59. Sitaram R., Zhang H., Guan C., Thulasidas M., Hoshi Y., Ishikawa A., et al. Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain–computer interface. NeuroImage 2007; 34(4): 1416–1427, http://dx.doi.org/10.1016/j.neuroimage.2006.11.005.
  60. Gratton G., Fabiani M. Fast optical imaging of human brain function. Front Hum Neurosci 2010; 4: 52, http://dx.doi.org/10.3389/fnhum.2010.00052.
  61. Wriessnegger S.C., Kurzmann J., Neuper C. Spatio-temporal differences in brain oxygenation between movement execution and imagery: a multichannel near-infrared spectroscopy study. Int J Psychophysiol 2008; 67(1): 54–63, http://dx.doi.org/10.1016/j.ijpsycho.2007.10.004.
  62. Tsubone T., Muroga T., Wada Y. Application to robot control using brain function measurement by near-infrared spectroscopy. Conf Proc IEEE Eng Med Biol Soc 2007; 2007: 5342–5345, http://dx.doi.org/10.1109/IEMBS.2007.4353548.
  63. Gupta C.N., Palaniappan R., Swaminathan S. Novel analysis technique for a brain biometric system. International Journal of Medical Engineering and Informatics 2008; 1(2): 266–273.
Trofimov А.О., Kalentiev G.V., Voennov О.V. Cerebral Infrared Oximetry in Intracranial Hemorrhage. Sovremennye tehnologii v medicine 2014; 6(1): 110


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank