Today: Jan 21, 2025
RU / EN
Last update: Dec 27, 2024
The Study of Glioblastoma Differentiation Possibility

The Study of Glioblastoma Differentiation Possibility

Medyanik I.A., Gordetsov А.S., Krasnikova О.V., Lobanov I.A., Radovsky V.V., Fraerman А.P., Terentiev I.G., Karyakin N.N.
Key words: glioblastoma; glioblastoma differentiation; anaplastic astrocytoma; infrared spectroscopy.
2014, volume 6, issue 2, page 93.

Full text

html pdf
1650
1725

The aim of the investigation was to assess the possibility of glioblastoma differentiation using infrared spectroscopy, proton magnetic resonance spectroscopy and immunohistochemistry.

Materials and Methods. 22 patients with glioblastomas and 21 patients with anaplastic astrocytomas were examined. All the patients underwent infrared spectroscopy of blood serum. 16 patients with glioblastomas were examined preoperatively and postoperatively, and in both cases 7 of them underwent proton magnetic resonance spectroscopy of tumors and identical peritumoral areas. All diagnoses were morphologically confirmed, and 10 cases with glioblastomas and 15 cases with anaplastic astrocytomas were confirmed by immunohistochemistry.

Results. Glioblastoma differentiation (Grade IV) into anaplastic astrocytomas (Grade III) was revealed postoperatively, in total glioblastoma resection and confirmed by the findings of infrared spectroscopy in blood serum, proton magnetic resonance spectroscopy of identical peritumoral areas performed preoperatively and postoperatively, as well as by immunohistochemical investigation of peritumoral area.

Conclusion. The complex of the techniques applied (infrared spectroscopy, proton magnetic resonance spectroscopy, immunohistochemistry) enables to assess how effective and total the surgery was, and if it promoted glioblastoma differentiation postoperatively, and determine how the tumor will develop after the surgery: as glioblastoma — with early continuous tumor growth, or as anaplastic astrocytoma — with the longer recurrence-free period. The findings are in agreement with tissue theory of tumor genesis; and change the understanding of the role and significance of surgical resection of glioblastomas in tumor differentiation.

  1. Terés S., Lladό V., Higuera M., et al. 2-Hydroxyoleate, a nontoxic membrane binding anticancer drug, induces glioma cell differentiation and autophagy. Proc Natl Acad Sci USA 2012; 109(22): 8489–8494.
  2. Xie Y.K., Huo S.F., Zhang G., et al. CDA-2 induces cell differentiation through suppressing Twist/SLUG signaling via miR-124 in glioma. J Neurooncol 2012; 110(2): 179–186, http://dx.doi.org/10.1007/s11060-012-0961-x.
  3. Zhuang W., Long L., Zheng B., et al. Curcumin promotes differentiation of glioma-initiating cells by inducing autophagy. Cancer Sci 2012; 103(4): 684–690, http://dx.doi.org/10.1111/j.1349-7006.2011.02198.x.
  4. Sukhdeo К., Hambardzumyan D., Rich J.N. Glioma development: where did it all go wrong? Cell 2011; 146(2): 187–188, http://dx.doi.org/10.1016/j.cell.2011.06.047.
  5. Anisimov A.G., Volkova T.O., Chekmasova A.A., Nemova N.N. Chemically induced differentiation of tumor line cells. Ontogenez 2002; 33(5): 325–341.
  6. Prityko A.G., Korshunov A.G., Kholodov B.V., et al. Transformatsiya medulloblastom u detey na fone poli-khimioterapii s obrazovaniem astrotsitarnoy gliomy. V kn.: Materialy III s”ezda neyrokhirurgov Rossii, 4–8 iyunya 2002 g., Sankt-Peterburg [Medulloblastoma transformation in children with poly-chemotherapy with the formation of astrocytic glioma. In: Proceedings of III Russian Neurosurgery congress, June 4–8, 2002. Saint-Petersburg]. Saint Petersburg; 2002; p. 585–586.
  7. Yang M.M., Singhal A., Rassekh S.R., et al. Possible differentiation of cerebral glioblastoma into pleomorphic xanthoastrocytoma: an unusual case in an infant. J Neurosurg Pediatr 2012; 9(5): 517–523, http://dx.doi.org/10.3171/2012.1.PEDS11326.
  8. Olyushin V.E., Filatov M.V., Ostreyko O.V., et al. Kompleksnaya terapiya bol'nykh gliomami polushariy bol'shogo mozga: itogi poslednego desyatiletiya i perspektivy. Kombinirovannoe lechenie opukholey golovnogo mozga. V kn.: Materialy Vseros. konf., 17–19 maya 2004 [Complex therapy of patients with cerebral gliomas: the results of the last decade and prospective. Combined treatment of cerebral tumors. In: Proceedings of All-Russian conference, May 17–19, 2004]. Ekaterinburg; 2004; p. 72–73.
  9. Kobyakov G.L. Khimioterapiya v kompleksnom lechenii bol'nykh s pervichnymi zlokachestvennymi opukholyami golovnogo mozga. Avtoref. dis. … dok. med. nauk [Chemotherapy in complex therapy of patients with primary cerebral malignancies. Abstract of a thesis for the degree of Doctor of Medical Science]. Moscow; 2011.
  10. Keles G.E., Anderson B., Berger M.S. The effect of extent of resection on time to tumor progression and survival in patients with glioblastoma multiforme of the cerebral hemisphere. Surg Neurol 1999; 52(4): 371–379.
  11. Zozulya Yu.A. Gliomy golovnogo mozga [Cerebral gliomas]. Kiev: UIPK “EksOb”; 2007; 632 p.
  12. Burger P.C., Dubois P.J., Schold S.C., et al. Computerized tomographic and pathologic studies of the untreated, quiescent, and recurrent glioblastoma multiforme. J Neurosurg 1983; 58(2): 159–169.
  13. Tolstorozhev G.B., Skornyakov I.V., Butra I.V. Diagnosis of oncological human pathologies using infrared spectroscopy. Zhurnal prikladnoy spektroskopii 2009; 76(6): 805–816.
  14. Stelling A.L., Toher D., Uckermann O., et al. Infrared spectroscopic studies of cells and tissues: triple helix proteins as a potential biomarker for tumors. PLoS One 2013; 8(3): e58332, http://dx.doi.org/10.1371/journal.pone.0058332.
  15. Steiner G., Shaw A., Choo-Smith L.P., et al. Distinguishing and grading human gliomas by IR spectroscopy. Biopolymers 2003; 72(6): 464–471.
  16. Krafft C., Sobottka S.B., Schackert G., Salzer R. Analysis of human brain tissue, brain tumors and tumor cells by infrared spectroscopic mapping. Analyst 2004; 129(10): 921–925, http://dx.doi.org/10.1039/B408934K.
  17. Krafft C., Sobottka S.B., Geiger K.D., et al. Classification of malignant gliomas by infrared spectroscopic imaging and linear discriminant analysis. Anal Bioanal Chem 2007; 387(5): 1669–1677.
  18. Ulitin A.Yu., Olyushin V.E., Safarov B.I., Matsko D.E. Metastaticheskie opukholi golovnogo mozga [Metastatic cerebral tumors]. Saint Petersburg: FGU «RNKhI im. prof. A.L. Polenova Rostekhnologiy»; 2010; 381 р.
  19. Gordetsov A.S., Medyanik I.A., Lebedev A.V., et al. Sposob diagnostiki novoobrazovaniy golovnogo mozga [Diagnostic technique of cerebral neoplasms]. Patent RF No. 2350953. 2009.
  20. Gordetsov A.S. Infrakrasnaya spektroskopiya biologicheskikh zhidkostey i tkaney [Infrared spectroscopy of biological fluids and tissues]. Sovremennye tehnologii v medicine 2010; 1: 84–98.
  21. Gordetsov A.S., Medyanik I.A., Lebedev A.V., et al. Sposob differentsial'noy diagnostiki novoobrazovaniy golovnogo mozga. Polozhitel'noe reshenie o vydache patenta RF ot 10.01.2014 g. po zayavke №2013101333 ot 10.01.2013 g. [Differential diagnostic technique of cerebral tumors. Russian Federation patent approval dated 10.01.2014, Application for a patent No.2013101333 dated 10.01.2013].
  22. WHO Classification of tumors, of the central nervous system. Lion; 2007.
  23. Daumas-Duport C. Histological grading of gliomas. Curr Opin Neurol Neurosurg 1992; 5: 924–931.
  24. Sovremennye tekhnologii i klinicheskie issledovaniya v neyrokhirurgii. Tom I [Modern technologies and clinical studies in neurosurgery. Volume I]. Pod red. A.N. Konovalova [A.N. Konovalov, editor]. Moscow; 2012; 320 p.
  25. Trufanov G.E., Tyutin L.A. Magnitno-rezonansnaya spektroskopiya [Magnetic resonance spectroscopy]. Saint Petersburg: ELBI–SPb; 2008; 239 p.
  26. Kim J.H., Chang K.H., Na D.G., et al. 3T 1H-MR Spectroscopy in grading of cerebral gliomas: comparison of short and intermediate echo time sequences. Am J Neuroradiol 2006; 27(7): 1412–1418.
  27. Karatağ O., Karatağ G.Y., Uysal E., et al. Can magnetic resonance spectroscopy adequately differentiate neoplastic from non-neoplastic and low-grade from high-grade lesions in brain masses? Marmara Med Journal 2010; 23(3): 326–338.
  28. Cherezov A.E. Obshchaya teoriya raka: tkanevyy podkhod [General tumor theory: tissue approach]. Moscow: Izd-vo MGU; 1997; 252 p.
  29. Dong Y., Zhang G., Huang G., et al. Glioma stem cells involved in tumor tissue remodeling in a xenograft model. J Neurosurg 2010; 113(2): 249–260, http://dx.doi.org/10.3171/2010.2.JNS09335.
  30. Borisov K.E., Makeeva D.D. Stem cells of cerebral gliomas. Arkhiv patologii 2013; 2: 43–52.
  31. Talayev V.Yu., Matveichev A.V., Lomunova M.A., et al. The effect of human placenta cytotrophoblast cells on the maturation and T cell stimulating ability of dendritic cells in vitro. Clin Experim Immunol 2010; 162(1): 91–99.
  32. Persano L., Rampazzo E., Basso G., Viola G. Glioblastoma cancer stem cells: role of the microenvironment and therapeutic targeting. Biochem Pharmacol 2012; 85(5): 612–622.
  33. Berezhnaya N.M. The role of immune system cells in tumor microenvironment. II. Interaction of immune system cells with other components of microenvironment. Onkologiya 2009; 11(2): 86–93.
  34. Osinskiy S.P., Vaupel’ P. Mikrofiziologiya [Microphysiology]. Kiev: Naukova dumka; 2009; 254 p.
  35. Lisyanyy N.I. Stemm cells of malignant gliomas and their interaction with tissue cell microenvironment. Ukr neyrokhіrurgіch zhurn 2011; 2: 9–13.
Medyanik I.A., Gordetsov А.S., Krasnikova О.V., Lobanov I.A., Radovsky V.V., Fraerman А.P., Terentiev I.G., Karyakin N.N. The Study of Glioblastoma Differentiation Possibility. Sovremennye tehnologii v medicine 2014; 6(2): 93


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank