Today: Nov 23, 2024
RU / EN
Last update: Oct 30, 2024
The Role of the Endogenous Opioid System in the Control  of Heart Rate Variability Under Cognitive Loads  of Various Levels

The Role of the Endogenous Opioid System in the Control of Heart Rate Variability Under Cognitive Loads of Various Levels

Parin S.B., Vetyugov V.V., Bakhchina А.V., Polevaya S.А.
Key words: endogenous opioid system; heart rate variability; cognitive functions.
2014, volume 6, issue 4, page 116.

Full text

html pdf
3203
2546

The aim of the investigation is to study the role of the endogenous opioid system (EOS) in the control of the heart rate under cognitive loads of different levels.

Materials and Methods. There has been given a brief historical background of the study of the role of endogenous opioid system (EOS) in regulation of body functions. A comparable analysis of the heart rate variability dynamics was carried out in drug-addicts with reduction of EOS receptor apparatus and healthy volunteers in the context of cognitive loads of different levels. 135 individuals were examined: 64 patients of the narcologic clinic with addiction to opiates composed an experimental group, and 71 healthy students were included into the control group. A measured cognitive load was formed using hardware-software complex Handtracking (Russia). Long-term continuous monitoring of heart rate was carried on by means of mobile telemetry.

Results. The psychophysiological markers of EOS activity during interactive communication with information images were determined on the basis of parameters of the heart rate variability and threshold characteristics of cognitive functions. It was established, that control and experimental samples were statistically significantly different by the frequency-domain indices of the heart rate variability in the stationary context of rest and in solving cognitive tasks (p<0.05), i.e. reduction of the mode of the autonomic regulation of heart rate and lack of adaptative alterations in the structure of the heart rate in case of changing the external information context, were characteristic of the examined drug-addicts. The most informative functional tests, the data of which make it possible to identify most effectively the condition of EOS and to develop noninvasive methods of diagnosing narcotization and addiction, were selected from the suggested contexts. Methods of collecting physiological data, minimizing the risks of cognitive context distortion, implying involvement of resources of the cognitive system in the process of measuring or interaction with an expert, were used for the first time.

  1. Pert C.B., Snyder S.H. Opiate receptor: demonstration in nervous tissue. Science 1973; 179(4077): 1011–1014, http://dx.doi.org/10.1126/science.179.4077.1011.
  2. Terenius L. Stereospecific interaction between narcotic analgesics and synaptic plasma membrane fraction of rat cerebral cortex. Acta Pharmacol Toxicol (Copenh) 1973; 32(3): 217–223.
  3. Hughes J., Smith T.W., Kosterlitz H.W., Fothergill U.A., Morgan B.A., Morris H.R. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 1975; 258(5536): 577–579, http://dx.doi.org/10.1038/258577a0.
  4. Terenius L., Wahlström A. Morphine-like ligand for opiate receptors in human CSF. Life Sci 1975; 16(12): 1759–1764, http://dx.doi.org/10.1016/0024-3205(75)90269-6.
  5. Teschemacher H., Opheim K.E., Cox B.M., Goldstein A. A peptide-like substance from pituitary that acts like morphine. Isolation. Life Sci 1975; 16(12): 1771–1776, http://dx.doi.org/10.1016/0024-3205(75)90271-4.
  6. Iversen L. Chemical identification of a natural opiate receptor agonist in brain. Nature 1975; 258(5536): 567–568, http://dx.doi.org/10.1038/258567a0.
  7. Akil H., Watson S.J. The role of endogenous opiates in pain control. In: Pain and society. Edited by H.W. Kosterlitz, L.Y. Terenius. New York: Springer-Verlag, Chemie Gmbh; 1980; p. 201–222.
  8. Watkins L.R., Mayer D.J. Organization of endogenous opiate and nonopiate pain control systems. Science 1982; 216(4551): 1185–1192, http://dx.doi.org/10.1126/science.6281891.
  9. Vaccarino A.L., Kastin A.J. Endogenous opiates: 2000. Peptides 2001; 22(12): 2257–2328, http://dx.doi.org/10.1016/S0196-9781(01)00566-6.
  10. Bodnar R.J., Kelly D.D., Spiaggia A., Ehrenberg C., Glussman M. Dose-dependent reductions by naloxone of analgesia induced by cold-water stress. Pharmacol Biochem Behav 1978; 8(6): 661–672.
  11. Teschemacher H., Breidenbach T., König A., Luckhardt M., Davies-Osterkamp S. Plasma levels of beta-endorphin/beta-lipotropin in humans under stress. Endogen. And Exogen. In: Opiate agonists and antagonists. Proc. Int. Narcotic Res. New York; 1980; p. 307–308.
  12. Bodnar R.J., Klein G.E. Endogenous opiates and behavior: 2005. Peptides 2006; 27(12): 3391–3478, http://dx.doi.org/10.1016/j.peptides.2006.07.011.
  13. Lee J.S., Stiell I.G., Wells G.A., Elder B.R., Vandemheen K., Shapiro S. Adverse outcomes and opioid analgesic administration in acute abdominal pain. Acad Emerg Med 2000; 7(9): 980–987, http://dx.doi.org/10.1111/j.1553-2712.2000.tb02087.x.
  14. Florez J., Mediavilla A., Pazos A. Respiratory effects of beta-endorphin, D-Ala2-met-enkephalinamide, and Met-enkephalin injected into the lateral ventricle and the pontomedullary subarachnoid space. Brain Res 1980; 199(1): 197–206.
  15. Faden A.I., Holaday J.W. Opiate antagonists: a role in the treatment of hypovolemic shock. Science 1979; 205(4403): 317–318, http://dx.doi.org/10.1126/science.451606.
  16. Faden A.J., Holaday J.W. Naloxone treatment of endotoxin shock: stereospecificity of physiologic and pharmacologic effects in the rat. J Pharmacol Exp Ther 1980; 212(3): 441–447.
  17. Holaday J.W., Faden A.J. Naloxone acts at central opiate receptors to reverse hypotension, hypothermia and hypoventilation in spinal shock. Brain Res 1980; 189(1): 295–299.
  18. Golanov E.V., Parin S.B., Suchkov V.V. Effect of naloxone in different doses on the course of hemorrhagic shock in rats. Bull Exp Biol Med 1983; 96(4): 1425–1428, http://dx.doi.org/10.1007/BF00837932.
  19. Golanov E.V., Parin S.B., Yasnetsov V.V. Effect of nalorphine and naloxone on the course of electronociceptive shock in rabbits. Bull Exp Biol Med 1982; 93(6): 765–767, http://dx.doi.org/10.1007/BF00830666.
  20. Golanov E.V., Fufacheva A.A., Parin S.B. Plasma β-endorphin-like immunoreactivity and its variations in baboons. Bull Exp Biol Med 1985; 100(6): 1653–1655, http://dx.doi.org/10.1007/BF00836297.
  21. Golanov E.V., Fufacheva A.A., Cherkovich G.M., Parin S.B. Effect of ligands of opiate receptors on emotiogenic cardiovascular responses in lower primates. Bull Exp Biol Med 1987; 103(4): 478–481, http://dx.doi.org/10.1007/BF00842473.
  22. Golanov E.V., Yasnetsov V.V., Parin S.B., Kalyuzhnyi L.V. Effect of destruction of the paraventricular and mediobasal hypothalamus on pain shock in rabbits. Bull Exp Biol Med 1982; 94(2): 1024–1028, http://dx.doi.org/10.1007/BF00830699.
  23. Parin S.B. Izmeneniya sostoyaniya endogennoy opioidnoy sistemy v usloviyakh vozdeystviya na organizm zhivotnykh yadov. V kn.: Mekhanizmy deystviya zootoksinov [The changes of endogenous opioid system condition when the body is exposed to zootoxins. In: Zootoxin mechanisms of action]. Gorkiy; 1986; p. 82–87.
  24. Parin S.B. Neyroendokrinnye mekhanizmy ustoychivosti organizma k vozdeystviyu zootoksinov. V kn.: Zootoksiny v eksperimental’noy biologii i meditsine [Neuroendocrine mechanisms of body resistance to zootoxin effect. In: Zootoxins in experimental biology and medicine]. Gorkiy; 1990; p. 73–83.
  25. Parin S.B., Golanov E.V., Epifanov Yu.B., Yasnetsov V.V. Vozmozhnaya rol’ opiatnoy sistemy v intoksikatsii zhivotnymi yadami. V kn.: Mekhanizmy deystviya zootoksinov [Possible role of opiate system in zootoxin intoxication. In: Zootoxin mechanisms of action]. Gorkiy; 1981; p. 101–116.
  26. Feuerstein G., Ailam R., Bergman F. Reversal by naloxone of hemorrhagic shock in anephric cats. Eur J Pharmacol 1980; 65(1): 93–96.
  27. Golanov E.V., Kalyuzhnyy L.V., Parin S.B., Sudakov K.V. Sposob lecheniya shokovogo sostoyaniya [Treatment modality of state of shock]. Author′s Сertificate 1138165. SSSR; 1984.
  28. Holaday J.W., Faden A.I. Narcotic antagonists in the therapy of shock. US patent 4,434,168. 1984.
  29. Selye H. The general adaptation syndrome and the diseases of adaptation. J Clin Endocrinol Metab 1946; 6: 117–230.
  30. Kulagin V.K. Patologicheskaya fiziologiya travmy i shoka [Pathological physiology of trauma and shock]. Leningrad; 1978; 247 p.
  31. Kulagin V.K., Kovalev O.A., Krivoruchko B.I., Sheremetevskaya S.K. Stress i emkostnaya funktsiya sistemy krovoobrashcheniya. V kn.: Nervnye i endokrinnye mekhanizmy stressa [Stress and capacitive function of circulatory system. In: Neuromechanisms and endocrine mechanisms of stress]. Kishinev: Izd-vo “Shtiintsa”; 1980; p. 143–156.
  32. Monov A. Shokovye sostoyaniya pri ostrykh toksicheskikh i allergicheskikh zabolevaniyakh [States of shock in acute toxic and allergic diseases]. Sofia: Meditsina i fizkul’tura; 1982; 238 p.
  33. Mazurkevich G.S., Bagnenko S.F. Shok: teoriya, klinika, organizatsiya protivoshokovoy pomoshchi [Shock: theory, clinical picture, anti-shock aid service]. Nauch. red. G.S. Mazurkevich, S.F. Bagnenko [Mazurkevich G.S., Bagnenko S.F. (editors)]. Saint Petersburg: Politekhnika; 2004; 539 p.
  34. Selye H. The physiology and pathology of exposure to stress. Montreal: Acta Inc. Medical Publishing; 1950; 822 р.
  35. Sherman D.M., Brodz V.A., Lafarenko V.A., Mikulyak I.V., Trach V.M., Formanchuk O.K., Shapiro I.Y. Role of endogenous opioid system in the mechanisms of shock. Arkhiv klinicheskoy i eksperimental’noy meditsiny 2003; 12(2): 153–157.
  36. Shuteu Yu., Bendile T., Kafritse A., Bukur A.I., Kyndya V. Shok: terminologiya i klassifikatsii. Shokovaya kletka. Patofiziologiya i lechenie [Shock: terminology and classification. Shock cell. Pathophysiology and treatment]. Bucharest: Voenizdat; 1981; 515 p.
  37. Parin S.B. Humans and animals in emergency situations: neurochemical mechanisms, evolutionary aspect. Vestnik Novosibirskogo gosudarstvennogo universiteta 2008; 2(2): 118–135.
  38. Parin S.B. Neurochemical and psychophysiological mechanisms of stress and shock. Vestnik Nizhegorodskogo gosudarstvennogo universiteta im. N.I. Lobachevskogo 2001; 20–28.
  39. Parin S.B., Tsverow A.V., Yakhno V.G. Model of neurochemistry mechanisms of stress and shock based on neuron-like network. In: Proceedings of International Symposium “Topical problems of biophotonics”. Moscow: 2007: 245–246.
  40. Parin V.V., Meerson F.Z. Ocherki klinicheskoy fiziologii krovoobrashcheniya [Feature articles of clinical physiology of blood circulation]. Moscow: Meditsina; 1960; 427 p.
  41. Baevskiy R.M., Kirillov O.I., Kletskin S.Z. Matematicheskiy analiz izmeneniy serdechnogo ritma pri stresse [Mathematical analysis of heart rate changes in stress]. Moscow: Nauka; 1984; 222 p.
  42. Johnson A.W., Gallagher M., Holland P.C. The basolateral amygdala is critical to the expression of pavlovian and instrumental outcome-specific reinforcer devaluation effects. J Neurosci 2009; 29(3): 696–704, http://dx.doi.org/10.1523/JNEUROSCI.3758-08.2009.
  43. Ruiz-Padial E., Vila J., Thayer J.F. The effect of conscious and non-conscious presentation of biologically relevant emotion pictures on emotion modulated startle and phasic heart rate. Int J Psychophysiol 2011; 79: 341–346, http://dx.doi.org/10.1016/j.ijpsycho.2010.12.001.
  44. Critchley H.D., Mathias C.J., Josephs O., O’Doherty J., Zanini S., Dewar B.K., Cipolotti L., Shallice T., Dolan R.J. Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence. Brain 2003; 126(10): 2139–2152, http://dx.doi.org/10.1093/brain/awg216.
  45. Lane R.D., McRae K., Reiman E.M., Chen K., Ahern G.L., Thayer J.F. Neural correlates of heart rate variability during emotion. Neuroimage 2009; 44(1): 213–222, http://dx.doi.org/10.1016/j.neuroimage.2008.07.056.
  46. Ahs F., Sollers J.J. 3rd, Furmark T., Fredrikson M., Thayer J.F. High-frequency heart rate variability and cortico-striatal activity in men and women with social phobia. NeuroImage 2009; 47(3): 815–820, http://dx.doi.org/10.1016/j.neuroimage.2009.05.091.
  47. Thayer J.F., Ahs F., Fredrikson M., Sollers M.J.J., Wagere T.D. A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev 2012; 36(2): 747–756, http://dx.doi.org/10.1016/j.neubiorev.2011.11.009.
  48. Taylor J.A., Myers C.W., Halliwill J.R., Seidel H., Eckberg D.L. Sympathetic restraint of respiratory sinus arrhythmia: implications for vagal-cardiac tone assessment in humans. Am J Physiol Heart Circ Physiol 2001; 280(6): H2804–H2814.
  49. Tzaneva L., Danev S., Nikolova R. Investigation of noise exposure effect on heart rate variability parameters. Cent Eur J Public Health 2001; 9(3): 130–132.
  50. Taelman J., Vandeput S., Vlemincx E., Spaepen A., Van Huffel S. Instantaneous changes in heart rate regulation due to mental load in simulated office work. Eur J Appl Physiol 2011; 111(7): 1497–1505, http://dx.doi.org/10.1007/s00421-010-1776-0.
  51. Ban’ A.S., Paramonova N.A., Zagorodnyy G.M., Ban’ D.S. The analysis of the relationship of heart rate variability indices. Voennaya meditsina 2010; 4: 21–24.
  52. Lishmanov Yu.B., Amosova E.N., Slepushkin V.D., Yaremenko K.V. The antistressor effect of D-Ala2-Leu5-Arg6-enkephalin. Bull Exp Biol Med 1984; 98(2): 199–200, http://dx.doi.org/10.1007/BF01262472.
  53. Lishmanov Yu.B., Maslov L.N., Lasukova T.V. The role of opioid system in the organism adaptation and heart protection in stress. Uspekhi fiziologicheskikh nauk 1997; 28(1): 75–97.
  54. Lishmanov Yu.B., Naryzhnaia N.V., Maslov L.N., Revinskaia I.G. Interrelations between sympathetic adrenal and opioid systems — regulatory mechanism determining cardiac resistance to stress damage. Uspekhi fiziologicheskikh nauk 2001; 32(4): 73–80.
  55. Lishmanov Yu.B., Maslov L.N., Tam S.V., Rebrova T.Yu. The role of μ- and δ-opiate receptors in the formation of resistance to free radical damage. Rossiyskiy fiziologicheskiy zhurnal im. I.M. Sechenova 2001; 87(5): 628–641.
  56. Chao C.C., Hu S., Shark K.B., Sheng W.S., Gekker G., Peterson P.K. Activation of mu opioid receptors inhibits microglial cell chemotaxis. J Pharmacol Exp Ther 1997; 281(2): 998–1004.
  57. Kuusela T.A., Kaila T.J., Kähönen M. Fine structure of the low-frequency spectra of heart rate and blood pressure. BMC Physiol 2003; 3(1): 11, http://dx.doi.org/10.1186/1472-6793-3-11.
  58. Hsieh C.W., Mao C.W., Young M.S., Yeh T.L., Yeh S.J. Assessment of parasympathetic control of blood vessel by pulsation spectrum and comparison with spectral method of RR intervals. Biomed Eng Appl Basis Comm 2003; 15(1): 8–16.
  59. Yildiz M., Ider Y.Z. Model based and experimental investigation of respiratory effect on the HRV power spectrum. Physiol Meas 2006; 27(10): 973–988, http://dx.doi.org/10.1088/0967-3334/27/10/004.
  60. Polevaya S.A., Parin S.B., Bakhchina A.V., Nekrasova M.M., Shishalov I.S., Runova E.V., Kozhevnikov V.V. Sistema opredeleniya funktsional’nogo sostoyaniya gruppy lyudey [Determination system of functional state of a group of people]. Patent RF No.129680. 2013.
  61. Polevaya S.A., Parin S.B., Bakhchina A.V., Nekrasova M.M., Shishalov I.S., Runova E.V., Kozhevnikov V.V. Sistema opredeleniya funktsional’nogo sostoyaniya gruppy lyudey s obratnoy svyaz’yu [Determination system of functional state of a group of people with feedback]. Patent RF №129681. 2013.
  62. Runova E.V., Parin S.B., Nekrasova M.M., Bakhchina A.V., Kovalchuk A.V., Shyshalov I.S., Polevaya S.A. Monitoring and distant diagnostics of sportsment’s functional state based on information technologies and telemetry in the conditions of natural activity. Int J Psychophysiology 2012; 85(3): 420–421.
  63. Antonets V.A., Kazakov V.V., Polevaya S.A. Hand-tracking: issledovanie pervichnykh kognitivnykh funktsiy cheloveka po ikh motornym proyavleniyam. V kn.: Sovremennaya eksperimental’naya psikhologiya [Handtracking: the study of primary cognitive human functions by their motor manifestations. In: Modern experimental psychology]. Nauch. red. Barabanshchikov V.A. [Barabanshchikov V.A. (editor)]. Moscow: Izd-vo “Institut psikhologii RAN”; 2011; p. 39–53.
  64. Onorati F., Barbieri R., Mauri M., Russo V., Mainardi L. Reconstruction and analysis of the pupil dilation signal: application to a psychophysiological affective protocol. Conf Proc IEEE Eng Med Biol Soc 2013; 2013: 5–8, http://dx.doi.org/10.1109/EMBC.2013.6609423.
  65. Chao D.M., Shen L.L., Tjen-A-Looi S., Pitssilides K.F., Longhurst J.C. Naloxone reverses inhibitory effect of electroacupuncture on sympathetic cardiovascular reflex responses. Am J Physiol 1999; 276 (6 Pt2): H2127–H2134.
  66. Tjen-A-Looi S.C., Li P., Li M., Longhurst J.C. Modulation of cardiopulmonary depressor reflex in nucleus ambiguus by electroacupuncture: roles of opioids and γ-aminobutyric acid. Am J Physiol Regul Integr Comp Physiol 2010; 299(5): 1369–1376, http://dx.doi.org/10.1152/ajpregu.00440.2011.
  67. Headrick J.P., Pepe S., Peart J.N. Non-analgesic effects of opioids: cardiovascular effects of opioids and their receptor systems. Curr Pharm Dec 2012; 18(37): 6090–6100, http://dx.doi.org/10.2174/138161212803582360.
  68. Maslov L.N., Lishmanov Yu.B., Krylov A.V., Uskina E.V. On the participation of endogenous agonists of μ- and δ-opiate receptors in mechanisms of anti-arrhythmic adaptation effect. Vestnik aritmologii 1995; 5: 35–38.

Parin S.B., Vetyugov V.V., Bakhchina А.V., Polevaya S.А. The Role of the Endogenous Opioid System in the Control of Heart Rate Variability Under Cognitive Loads of Various Levels . Sovremennye tehnologii v medicine 2014; 6(4): 116


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank