Today: Jan 21, 2025
RU / EN
Last update: Dec 27, 2024
Evaluation of Freshness of Soft Tissue Samples with Optical Coherence Tomography Assisted by Low Frequency Electric Field

Evaluation of Freshness of Soft Tissue Samples with Optical Coherence Tomography Assisted by Low Frequency Electric Field

Peña A., Sadovoy A., Doronin A., Bykov A., Meglinski I.
Key words: optical coherence tomography; low frequency electric field; soft biological tissue samples.
2015, volume 7, issue 1, page 69.

Full text

html pdf
2086
2428

We present an optical coherence tomography based methodology to determine freshness of soft tissue samples by evaluation of their interaction with low frequency electric field. Various biological tissues samples of different stages of freshness were exposed by low frequency electric current. The influence of the low frequency electric field on tissues was observed and quantified by the double correlation optical coherence tomography (dcOCT) approach developed in house. The quantitative evaluation of electric field — tissue interaction by dcOCT shows an increase of its relative magnitude with the tissue freshness from fresh to the non-fresh ones. The presented approach has a strong potential in food sciences for evaluation of meat quality.

  1. Optical coherence tomography: technology and applications. Drexler W., Fujimoto J. (editors). Berlin, Heidelbeg: Springer; 2008; 1346 p., http://dx.doi.org/10.1007/978-3-540-77550-8.
  2. Handbook of optical coherence tomography. Bouma B., Tearney G. (editors). New York: Marcel Dekker; 2002; 740 p.
  3. Yasuno Y., Hong Y., Makita S., Yamanari M., Akiba M., Miura M., Yatagai T. In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography. Opt Express 2007; 15: 6121–6139, http://dx.doi.org/10.1364/OE.15.006121.
  4. Wang Y., Bower B.A., Izatt J.A., Tan O., Huang D. In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography. J Biomed Opt 2007; 12(4): 041215, http://dx.doi.org/10.1117/1.2772871.
  5. White B.R., Pierce M.C., Nassif N., Cense B., Park B.H., Tearney G.J., Bouma B.E., Chen T.C., de Boer J.F. In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography. Opt Express 2003; 11(25): 3490–3497, http://dx.doi.org/10.1364/OE.11.003490.
  6. Bezerra H.G., Costa M.A., Guagliumi G., Rollins A.M., Simon D.I. Intracoronary optical coherence tomography: a comprehensive review: clinical and research applications JACC Cardiovasc Interv 2009; 2(11): 1035–1046, http://dx.doi.org/10.1016/j.jcin.2009.06.019.
  7. Srinivasan V.J., Mandeville E.T., Can A., Blasi F., Climov M., Daneshmand A., Lee J.H., Yu E., Radhakrishnan H., Lo E.H., Sakadžić S., Eikermann-Haerter K., Ayata C. Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke. PLoS ONE 2013; 8(8): e71478, http://dx.doi.org/10.1371/journal.pone.0071478.
  8. Bhat S., Larina I.V., Larin K.V., Dickinson M.E., Liebling M. 4D reconstruction of the beating embryonic heart from two orthogonal sets of parallel optical coherence tomography slice-sequences. IEEE Trans Med Imaging 2013; 32(3): 578–588, http://dx.doi.org/10.1109/TMI.2012.2231692.
  9. Bykov A.V., Priezzhev A.V., Lauri J., Myllylä R. Doppler OCT imaging of cytoplasm shuttle flow in Physarum polycephalum. J Biophotonics 2009; 2(8–9): 540–547, http://dx.doi.org/10.1002/jbio.200910057.
  10. Polk C., Postow E. Handbook of biological effects of electromagnetic fields. CRC Press; 1986; 503 p.
  11. Cetin O., Bingol E.B., Colak H., Hampikyan H. Effects of electrical stimulation on meat quality of lamb and goat meat. Scientific World Journal 2012; 2012: 574202, http://dx.doi.org/10.1100/2012/574202.
  12. Faridnia F., Bekhit A.El-Din.A., Niven B., Oey I. Impact of pulsed electric fields and post-mortem vacuum ageing on beef longissimus thoracis muscles. International Journal of Food Science & Technology 2014; 49(11): 2339–2347, http://dx.doi.org/10.1111/ijfs.12532.
  13. Kamali T., Doronin A., Rattanapak T., Hook S., Meglinski I. Assessment of transcutaneous vaccine delivery by optical coherence tomography. Laser Phys Lett 2012; 6(8): 607–610, http://dx.doi.org/10.7452/lapl.201210046.
  14. Rattanapak T., Birchall J., Young K., Ishii M., Meglinski I., Rades T., Hook S. Transcutaneous immunization using micro-needles and cubosomes: mechanistic investigation using optical coherence tomography and two-photon microscopy. J Controlled Release 2013; 172(3): 894–903, http://dx.doi.org/10.1016/j.jconrel.2013.08.018.
  15. Doronin A., Meglinski I. Imaging of subcutaneous microcirculation vascular network by double correlation optical coherence tomography. Las & Photon Rev 2013; 7(5): 797–800, http://dx.doi.org/10.1002/lpor.201200108.
  16. Wawrzyn K., Demidov V., Vuong B., Harduar M.K., Sun C., Yang V.X.D., Doganay O., Toronov V., Xu Y. Imaging the electro-kinetic response of biological tissues with optical coherence tomography. Opt Lett 2013; 38(14): 2572–2574, http://dx.doi.org/10.1364/OL.38.002572.
  17. Peña A.F., Devine J., Doronin A., Meglinski I. Imaging of the interaction of low frequency electric fields with biological tissues by optical coherence tomography. Opt Lett 2013; 38(14): 2629–2631, http://dx.doi.org/10.1364/OL.38.002629.
  18. Peña A.F., Doronin A., Tuchin V.V., Meglinski I. Monitoring of interaction of low-frequency electric field with biological tissues upon optical clearing with optical coherence tomography. J Biomed Opt 2014; 19(8): 086002, http://dx.doi.org/10.1117/1.JBO.19.8.086002.
  19. Jonathan E., Enfield J., Leahy M.J. Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images. J Biophotonics 2011; 4(9): 583–587, http://dx.doi.org/10.1002/jbio.201000103.
  20. Gonzalez R., Woods R. Digital image processing. 3rd ed. Upper Saddle River (NJ): Prentice Hall; 2008; 976 p.
  21. Lim J. Two-dimensional signal and image processing. Upper Saddle River (NJ): Prentice Hall; 1989; 694 p.
  22. Kirk D. Hwu W. Programming massively parallel processors: a hands-on approach. Burlington (MA): M.K. Publishers; 2010; 280 p.
  23. Doronin A., Meglinski I. Online object oriented Monte Carlo computational tool for the needs of biomedical optics. Biomed Opt Express 2011; 2(9): 2461–2469, http://dx.doi.org/10.1364/BOE.2.002461.
Peña A., Sadovoy A., Doronin A., Bykov A., Meglinski I. Evaluation of Freshness of Soft Tissue Samples with Optical Coherence Tomography Assisted by Low Frequency Electric Field. Sovremennye tehnologii v medicine 2015; 7(1): 69, https://doi.org/10.17691/stm2015.7.1.09


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank