Effect of Autologous Modification of Dental Implants Based on Non-Woven Titanium Material with a Through Porosity on the Primary Stability Indices in Experiment
The aim of the investigation is to compare primary stability values of dental implant models based on titanium non-woven material with a through porosity mounted by traditional technology and the technology of autologous modification in experiment.
Materials and Methods. A randomized study was performed on 18 mandible models of pigs aged 9 to 13 months. Periotestometry method was used for comparative assessment of primary stability of dental implant models based on non-woven titanium material with a through porosity placed by traditional technology (the first series of tests, n=18) and that of autologous modification (the second series of tests, n=18). The diameter of pin spacers was 1.8; 2.0; 2.3 mm.
Results. Pin spacer diameter increase from 1.8 mm to 2.3 mm in dental implant models with titanium sleeves made of non-woven material with a through porosity increases stability values by 7.8 times, whereas for implant models with the sleeves made of the same non-woven titanium material but modified by autologous bone tissue — by 10.06 times. Autologous bone modification of titanium non-woven material with a through porosity increases stability indices of an implant with a pin spacer diameter of 1.8 mm by 1.39 times, 2.0 mm — by 3.5 times, and 2.3 mm — by 1.79 times.
Conclusion. Use of autologous modification technology of dental implants made of non-woven titanium material optimizes stability values of dental implants.
- von Wilmowsky C., Moest T., Nkenke E., Stelzle F., Schlegel K.A. Implants in bone: part I. A current overview about tissue response, surface modifications and future perspectives. Oral Maxillofac Surg 2014; 18(3): 243–257, http://dx.doi.org/10.1007/s10006-013-0398-1.
- von Wilmowsky C., Moest T., Nkenke E., Stelzle F., Schlegel K.A. Implants in bone: Part II. Research on implant osseointegration. Oral Maxillofac Surg 2014; 18(4): 355–372, http://dx.doi.org/10.1007/s10006-013-0397-2.
- Gittens R.A., Scheideler L., Rupp F., Hyzy S.L., Geis-Gerstorfer J., Schwartz Z., Boyan B.D. A review on the wettability of dental implant surfaces II: Biological and clinical aspects. Acta Biomater 2014; 10(7): 2907–2918, http://dx.doi.org/10.1016/j.actbio.2014.03.032.
- Mathieu V., Vayron R., Richard G., Lambert G., Naili S., Meningaud J.P., Haiat G. Biomechanical determinants of the stability of dental implants: influence of the bone-implant interface properties. J Biomech 2014; 47(1): 3–13, http://dx.doi.org/10.1016/j.jbiomech.2013.09.021.
- Markhoff J., Mick E., Mitrovic A., Pasold J., Wegner K., Bader R. Surface modifications of dental ceramic implants with different glass solder matrices: in vitro analyses with human primary osteoblasts and epithelial cells. Biomed Res Int 2014; 2014: 742180, http://dx.doi.org/10.1155/2014/742180.
- Cheng A., Humayun A., Cohen D.J., Boyan B.D., Schwartz Z. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner. Biofabrication 2014; 6(4): 045007, http://dx.doi.org/10.1088/1758-5082/6/4/045007.
- Hong Y.S., Kim J., Han J.S., Yeo I.S. Effects of hydrophilicity and fluoride surface modifications to titanium dental implants on early osseointegration: an in vivo study. Implant Dent 2014; 23(5): 529–533, http://dx.doi.org/10.1097/id.0000000000000131.
- Lugovskoy A., Lugovskoy S. Production of hydroxyapatite layers on the plasma electrolytically oxidized surface of titanium alloys. Mater Sci Eng C Mater Biol Appl 2014; 43: 527–532, http://dx.doi.org/10.1016/j.msec.2014.07.030.
- Ballo A.M., Cekic-Nagas I., Ergun G., Lassila L., Palmquist A., Borchardt P., Lausmaa J., Thomsen P., Vallittu P.K., Närhi T.O. Osseointegration of fiber-reinforced composite implants: Histological and ultrastructural observations. Dent Mater 2014; 30(12): e384–e395, http://dx.doi.org/10.1016/j.dental.2014.08.361.
- Bressan E., Sbricoli L., Guazzo R., Tocco I., Roman M., Vindigni V., Stellini E., Gardin C., Ferroni L., Sivolella S., Zavan B. Nanostructured surfaces of dental implants. Int J Mol Sci 2013; 14(1): 1918–1931, http://dx.doi.org/10.3390/ijms14011918.
- Scherbovskih A.E. Assessment of biocompatibility of non-tissue titanium material with continuous porosity on the culture of multipotent mesenchymal stromal cells in experiment. Aspirantskiy vestnik Povolzh’ya 2014; 1–2: 210–213.
- Nazirkar G., Singh S., Dole V., Nikam A. Effortless effort in bone regeneration: a review. J Int Oral Health 2014; 6(3): 120–124.
- Jindal V., Gill A.S., Kapoor D., Gupta H. The comparative efficacy of decalcified allogenic bone matrix and intra-oral free osseous autografts in the treatment of periodontal intrabony defects. J Indian Soc Periodontol 2013; 17(1): 91–95, http://dx.doi.org/10.4103/0972-124x.107482.
- Jensen S.S., Broggini N., Hjörting-Hansen E., Schenk R., Buser D. Bone healing and graft resorption of autograft, anorganic bovine bone and beta-tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs. Clin Oral Implants Res 2006; 17(3): 237–243, http://dx.doi.org/10.1111/j.1600-0501.2005.01257.x.
- Leonova L.A., Guzeeva T.I., Guzeev V.V. Kompozitsionnye pokrytiya dlya implantatov i endoprotezov. V kn.: II Mezhdunarodnaya nauchno-prakticheskaya konferentsiya molodykh uchenykh “Resursoeffektivnye tekhnologii dlya budushchikh pokoleniy”, 23–25 noyabrya 2010 g. [Composite coatings for implants and endoprostheses. In: II International scientific and practical conference of the young scientists “Resource-effective technologies for future generations”, 23–25 November, 2010]. Tomsk; 2010.
- Truhlar R.S., Morris H.F., Ochi S. Stability of the bone-implant complex. Results of longitudinal testing to 60 months with the Periotest device on endosseous dental implants. Ann Periodontol 2000 Dec; 5(1): 42–55, http://dx.doi.org/10.1902/annals.2000.5.1.42.
- Scherbovskih A.E., Bayrikov I.M., Mizina P.G. Dental’nyy implantat (varianty). Patent RF na poleznuyu model’ 143685 [Dental implant (variants). RF Utility Patent 143685]. 2014.
- Scherbovskih A.E., Bayrikov I.M., Volova L.T., Mizina P.G. Sposob dental’noy implantatsii (varianty). Patent RF na izobretenie 2 544 804 [Method of dental implantation (variants). RF Patent for invention 2 544 804]. 2015.