Today: Dec 22, 2024
RU / EN
Last update: Oct 30, 2024
Effect of Autologous Modification of Dental Implants Based on Non-Woven Titanium Material with a Through Porosity on the Primary Stability Indices in Experiment

Effect of Autologous Modification of Dental Implants Based on Non-Woven Titanium Material with a Through Porosity on the Primary Stability Indices in Experiment

Scherbovskih A.E., Gafurov S.A.
Key words: dental implant; non-woven titanium material with a through porosity; primary stability of dental implant; autobone; osseointegration; porous metal.
2015, volume 7, issue 2, page 62.

Full text

html pdf
2558
1681

The aim of the investigation is to compare primary stability values of dental implant models based on titanium non-woven material with a through porosity mounted by traditional technology and the technology of autologous modification in experiment.

Materials and Methods. A randomized study was performed on 18 mandible models of pigs aged 9 to 13 months. Periotestometry method was used for comparative assessment of primary stability of dental implant models based on non-woven titanium material with a through porosity placed by traditional technology (the first series of tests, n=18) and that of autologous modification (the second series of tests, n=18). The diameter of pin spacers was 1.8; 2.0; 2.3 mm.

Results. Pin spacer diameter increase from 1.8 mm to 2.3 mm in dental implant models with titanium sleeves made of non-woven material with a through porosity increases stability values by 7.8 times, whereas for implant models with the sleeves made of the same non-woven titanium material but modified by autologous bone tissue — by 10.06 times. Autologous bone modification of titanium non-woven material with a through porosity increases stability indices of an implant with a pin spacer diameter of 1.8 mm by 1.39 times, 2.0 mm — by 3.5 times, and 2.3 mm — by 1.79 times.

Conclusion. Use of autologous modification technology of dental implants made of non-woven titanium material optimizes stability values of dental implants.

  1. von Wilmowsky C., Moest T., Nkenke E., Stelzle F., Schlegel K.A. Implants in bone: part I. A current overview about tissue response, surface modifications and future perspectives. Oral Maxillofac Surg 2014; 18(3): 243–257, http://dx.doi.org/10.1007/s10006-013-0398-1.
  2. von Wilmowsky C., Moest T., Nkenke E., Stelzle F., Schlegel K.A. Implants in bone: Part II. Research on implant osseointegration. Oral Maxillofac Surg 2014; 18(4): 355–372, http://dx.doi.org/10.1007/s10006-013-0397-2.
  3. Gittens R.A., Scheideler L., Rupp F., Hyzy S.L., Geis-Gerstorfer J., Schwartz Z., Boyan B.D. A review on the wettability of dental implant surfaces II: Biological and clinical aspects. Acta Biomater 2014; 10(7): 2907–2918, http://dx.doi.org/10.1016/j.actbio.2014.03.032.
  4. Mathieu V., Vayron R., Richard G., Lambert G., Naili S., Meningaud J.P., Haiat G. Biomechanical determinants of the stability of dental implants: influence of the bone-implant interface properties. J Biomech 2014; 47(1): 3–13, http://dx.doi.org/10.1016/j.jbiomech.2013.09.021.
  5. Markhoff J., Mick E., Mitrovic A., Pasold J., Wegner K., Bader R. Surface modifications of dental ceramic implants with different glass solder matrices: in vitro analyses with human primary osteoblasts and epithelial cells. Biomed Res Int 2014; 2014: 742180, http://dx.doi.org/10.1155/2014/742180.
  6. Cheng A., Humayun A., Cohen D.J., Boyan B.D., Schwartz Z. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner. Biofabrication 2014; 6(4): 045007, http://dx.doi.org/10.1088/1758-5082/6/4/045007.
  7. Hong Y.S., Kim J., Han J.S., Yeo I.S. Effects of hydrophilicity and fluoride surface modifications to titanium dental implants on early osseointegration: an in vivo study. Implant Dent 2014; 23(5): 529–533, http://dx.doi.org/10.1097/id.0000000000000131.
  8. Lugovskoy A., Lugovskoy S. Production of hydroxyapatite layers on the plasma electrolytically oxidized surface of titanium alloys. Mater Sci Eng C Mater Biol Appl 2014; 43: 527–532, http://dx.doi.org/10.1016/j.msec.2014.07.030.
  9. Ballo A.M., Cekic-Nagas I., Ergun G., Lassila L., Palmquist A., Borchardt P., Lausmaa J., Thomsen P., Vallittu P.K., Närhi T.O. Osseointegration of fiber-reinforced composite implants: Histological and ultrastructural observations. Dent Mater 2014; 30(12): e384–e395, http://dx.doi.org/10.1016/j.dental.2014.08.361.
  10. Bressan E., Sbricoli L., Guazzo R., Tocco I., Roman M., Vindigni V., Stellini E., Gardin C., Ferroni L., Sivolella S., Zavan B. Nanostructured surfaces of dental implants. Int J Mol Sci 2013; 14(1): 1918–1931, http://dx.doi.org/10.3390/ijms14011918.
  11. Scherbovskih A.E. Assessment of biocompatibility of non-tissue titanium material with continuous porosity on the culture of multipotent mesenchymal stromal cells in experiment. Aspirantskiy vestnik Povolzh’ya 2014; 1–2: 210–213.
  12. Nazirkar G., Singh S., Dole V., Nikam A. Effortless effort in bone regeneration: a review. J Int Oral Health 2014; 6(3): 120–124.
  13. Jindal V., Gill A.S., Kapoor D., Gupta H. The comparative efficacy of decalcified allogenic bone matrix and intra-oral free osseous autografts in the treatment of periodontal intrabony defects. J Indian Soc Periodontol 2013; 17(1): 91–95, http://dx.doi.org/10.4103/0972-124x.107482.
  14. Jensen S.S., Broggini N., Hjörting-Hansen E., Schenk R., Buser D. Bone healing and graft resorption of autograft, anorganic bovine bone and beta-tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs. Clin Oral Implants Res 2006; 17(3): 237–243, http://dx.doi.org/10.1111/j.1600-0501.2005.01257.x.
  15. Leonova L.A., Guzeeva T.I., Guzeev V.V. Kompozitsionnye pokrytiya dlya implantatov i endoprotezov. V kn.: II Mezhdunarodnaya nauchno-prakticheskaya konferentsiya molodykh uchenykh “Resursoeffektivnye tekhnologii dlya budushchikh pokoleniy”, 23–25 noyabrya 2010 g. [Composite coatings for implants and endoprostheses. In: II International scientific and practical conference of the young scientists “Resource-effective technologies for future generations”, 23–25 November, 2010]. Tomsk; 2010.
  16. Truhlar R.S., Morris H.F., Ochi S. Stability of the bone-implant complex. Results of longitudinal testing to 60 months with the Periotest device on endosseous dental implants. Ann Periodontol 2000 Dec; 5(1): 42–55, http://dx.doi.org/10.1902/annals.2000.5.1.42.
  17. Scherbovskih A.E., Bayrikov I.M., Mizina P.G. Dental’nyy implantat (varianty). Patent RF na poleznuyu model’ 143685 [Dental implant (variants). RF Utility Patent 143685]. 2014.
  18. Scherbovskih A.E., Bayrikov I.M., Volova L.T., Mizina P.G. Sposob dental’noy implantatsii (varianty). Patent RF na izobretenie 2 544 804 [Method of dental implantation (variants). RF Patent for invention 2 544 804]. 2015.
Scherbovskih A.E., Gafurov S.A. Effect of Autologous Modification of Dental Implants Based on Non-Woven Titanium Material with a Through Porosity on the Primary Stability Indices in Experiment. Sovremennye tehnologii v medicine 2015; 7(2): 62, https://doi.org/10.17691/stm2015.7.2.08


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank