Today: Jan 22, 2025
RU / EN
Last update: Dec 27, 2024
Modern Technologies of Bronchial Asthma Control in Children (Review)

Modern Technologies of Bronchial Asthma Control in Children (Review)

Eliseeva Т.I., Balabolkin I.I.
Key words: bronchial asthma; children; bronchial asthma control; baseline anti-inflammatory therapy of bronchial asthma.
2015, volume 7, issue 2, page 168.

Full text

html pdf
8608
2768

Bronchial asthma ranks among the most common allergic diseases in children. It is chronic inflammatory disease of the respiratory tract, in which many cells of innate and adaptive immune system participate together with epithelial cells causing the main clinical syndromes typical for the disease. Currently, bronchial asthma therapy aims at obtaining the control over the symptoms and course of asthma by providing an anti-inflammatory baseline therapy using different groups of pharmaceuticals: inhaled glucocorticosteroids, leukotriene receptor antagonists, cromones, beta-2-agonists and long-acting theophyllines, systemic glucocorticosteroids and anti-IgE-therapy. However, despite a wide range of approaches to anti-inflammatory baseline therapy, it is still a problem to obtain the disease control in most patients indicating the necessity for searching new therapeutic approaches. In this regard, to optimize pathogenetic therapy of bronchial asthma, the work is being currently carried out to improve the existing anti-inflammatory drugs and their combinations. Moreover, there is a search for crucially new approaches to asthma treatment with due consideration of the disease phenotypes and endotypes including development and practical application of pharmaceutical drugs with anti-cytokine and anti-mediator effects. Probably, as far as the knowledge of molecular characteristics of asthma endotypes is being refined, and there being introduced the biomarkers enabling to diagnose asthma phenotypes and endotypes and monitor asthma control, there will be implemented an individual approach in individual therapy administration.

  1. Asher M.I. The asthma epidemic — global and time trends of asthma in children. In: Global atlas of asthma. Akdis C.A., Agache I. (editors). EAACI; 2013; p. 7–9.
  2. Lambrecht B.N., Hammad H. The immunology of asthma. Nat Immunol 2014; 16(1): 45–56, http://dx.doi.org/10.1038/ni.3049.
  3. Gushchin I.S. Allergic permeability of barrier tissues is strategic problem of allergology. Pul’monologiya 2006; 3: 5–13.
  4. Holgate S.T. Innate and adaptive immune responses in asthma. Nat Med 2012; 18(5): 673–683, http://dx.doi.org/10.1038/nm.2731.
  5. Esposito S., Tenconi R., Lelii M., Preti V., Nazzari E., Consolo S., Patria M.F. Possible molecular mechanisms linking air pollution and asthma in children. BMC Pulm Med 2014; 14(1): 31, http://dx.doi.org/10.1186/1471-2466-14-31.
  6. Wenzel S.E. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med 2012; 18(5): 716–725, http://dx.doi.org/10.1038/nm.2678.
  7. Anderson G.P. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet 2008; 372(9643): 1107–1119, http://dx.doi.org/10.1016/s0140-6736(08)61452-x.
  8. Leung T.F., Ko F.W.S., Wong G.W.K. Recent advances in asthma biomarker research. Ther Adv Respir Dis 2013; 7(5): 297–308, http://dx.doi.org/10.1177/1753465813496863.
  9. Li B.W.S., Hendriks R.W. Group 2 innate lymphoid cells in lung inflammation. Immunology 2013; 140(3): 281–287, http://dx.doi.org/10.1111/imm.12153.
  10. Vroman H., van den Blink B., Kool M. Mode of dendritic cell activation: the decisive hand in Th2/Th17 cell differentiation. Implications in asthma severity? Immunobiology 2015; 220(2): 254–261, http://dx.doi.org/10.1016/j.imbio.2014.09.016.
  11. Essilfie A.-T., Simpson J.L., Horvat J.C., Preston J.A., Dunkley M.L., Foster P.S., Gibson P.G., Hansbro P.M. Haemophilus influenzae infection drives IL-17-mediated neutrophilic allergic airways disease. PLoS Pathog 2011; 7(10): e1002244, http://dx.doi.org/10.1371/journal.ppat.1002244.
  12. Woodruff P.G., Modrek B., Choy D.F., Jia G., Abbas A.R., Ellwanger A., Koth L.L., Arron J.R., Fahy J.V. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med 2009; 180(5): 388–395, http://dx.doi.org/10.1164/rccm.200903-0392oc.
  13. Mantzouranis E., Papadopouli E., Michailidi E. Childhood asthma: recent developments and update. Curr Opin Pulm Med 2014; 20(1): 8–16, http://dx.doi.org/10.1097/mcp.0000000000000014.
  14. Balabolkin I.I. Bronkhial’naya astma u detey [Asthma in children]. Moscow; 2003; 320 p.
  15. Gushchin I.S., Kurbacheva O.M. Allergiya i allergenspetsificheskaya immunoterapiya [Allergy and allergen-specific immune therapy]. Moscow; 2010; 228 p.
  16. Kuipers H., Lambrecht B.N. The interplay of dendritic cells, Th2 cells and regulatory T cells in asthma. Curr Opin Immunol 2004; 16(6): 702–708, http://dx.doi.org/10.1016/j.coi.2004.09.010.
  17. Kudo M., Ishigatsubo Y., Aoki I. Pathology of asthma. Front Microbiol 2013; 4: 263, http://dx.doi.org/10.3389/fmicb.2013.00263.
  18. Rowe R.K., Gill M.A. Asthma: the interplay between viral infections and allergic diseases. Immunol Allergy Clin North Am 2015; 35(1): 115–127, http://dx.doi.org/10.1016/j.iac.2014.09.012.
  19. Aydogan M., Ozen A., Akkoc T., Eifan A.O., Aktas E., Deniz G., Gocmen I., Bahceciler N.N., Barlan I. Risk factors for persistence of asthma in children: 10-year follow-up. J Asthma 2013; 50(9): 938–944, http://dx.doi.org/10.3109/02770903.2013.831872.
  20. Eliseeva T.I., Balabolkin I.I., Prakhov A.V. Struktura sensibilizatsii k aeroallergenam u detey s bronkhial’noy astmoy. V kn.: Aktual’nye voprosy pediatrii, perinatologii i reprudoktologii: mezhvuzovskiy sbornik nauchnykh trudov [Structure of sensibilization to aeroallergens in children with bronchial asthma. In: Topical issues of pediatrics, perinatology and reproductology: interuniversity collection of scientific papers]. Nizhny Novgorod; 2013; p. 31–38.
  21. Eliseeva T.I., Bol’shova E.V., Kul’gina Yu.S., Konyshkina T.M., Prakhov A.V., Novikova N.A. Antibodies to Chlamydophila pneumoniae and Mycoplasma pneumoniae in children with different control level of bronchial asthma. Meditsinskiy al’manakh 2011; 4(17): 235–238.
  22. Bulgakova V.A. Clinical value of study of immunocompetent cell apoptosis activation markers in atopical bronchial asthma in children. Pediatriya 2009; 87(2): 12–18.
  23. GINA. Global strategy for asthma management and prevention 2014 (Revision 2014), http://www.ginasthma.org/local/uploads/files/GINA_Report_2014_Aug12.pdf.
  24. Eliseeva T.I., Balabolkin I.I., Prakhov A.V. Variabel’nost’ bronkhial’noy prokhodimosti pri otsenke urovnya kontrolya bronkhial’noy astmy u detey. V kn.: Prakticheskie zadachi i aktual’nye voprosy detskoy allergologii i immunologii [Bronchial patency variability in bronchial asthma control assessment in children. In: Practical problems and topical issues of pediatric allergology and immunology]. Moscow; 2013; p. 19.
  25. Ritz T., Trueba A.F. Airway nitric oxide and psychological processes in asthma and health: a review. Ann Allergy Asthma Immunol 2014; 112(4): 302–308, http://dx.doi.org/10.1016/j.anai.2013.11.022.
  26. Turner S. Exhaled nitric oxide in the diagnosis and management of asthma. Curr Opin Allergy Clin Immunol 2008; 8(1): 70–76, http://dx.doi.org/10.1097/aci.0b013e3282f3b4b0.
  27. Eliseeva T.I., Geppe N.A., Soodaeva S.K. Integrated assessment of control over bronchial asthma in children based on the determination of nitric oxide metabolite content in exhaled breath condensate and spirographic parameters. Pul’monologiya 2013; 6: 51–56.
  28. Volkova L.I., Kapitanova D.V., Boyarko V.V., Saprykina E.V. Cellular composition of induced sputum and nitric oxide in exhaled breath condensate in bronchial asthma. Sibirskiy meditsinskiy zhurnal 2007; 4: 17–21.
  29. Rahman I., Kelly F. Review Biomarkers in breath condensate: a promising new non-invasive technique in free radical research. Free Radic Res 2003; 37(12): 1253–1266, http://dx.doi.org/10.1080/10715760310001623331.
  30. Corradi M., Zinelli C., Caffarelli C. Exhaled breath biomarkers in asthmatic children. Inflamm Allergy Drug Targets 2007; 6(3): 150–159, http://dx.doi.org/10.2174/187152807781696437.
  31. Grob N.M., Aytekin M., Dweik R. Biomarkers in exhaled breath condensate: a review of collection, processing and analysis. J Breath Res 2008; 2(3): 1–18, http://dx.doi.org/10.1088/1752-7155/2/3/037004.
  32. Anaev E.Kh. The study of exhaled breath condensate РН in pulmonary inflammatory diseases. Pul’monologiya 2005; 5: 75–79.
  33. Eliseeva T.I. A new technique for determining Н2О2 in exhaled breath condensate. Allergologiya i immunologiya v pediatrii 2008; 14(3): 44.
  34. Eliseeva T.I. Diagnostic objectivization of bronchial asthma control level in children using рН-metry of exhaled breath condensate. Sovremennye meditsinskie tekhnologii 2010; 3: 44–47.
  35. Murugan A., Prys-Picard C., Calhoun W.J. Biomarkers in asthma. Curr Opin Pulm Med 2009; 15(1): 12–18, http://dx.doi.org/10.1097/mcp.0b013e32831de235.
  36. Luxon B.A. Metabolomics in asthma. Adv Exp Med Biol 2014; 795: 207–220, http://dx.doi.org/10.1007/978-1-4614-8603-9_13.
  37. Kim M.A., Shin Y.S., Pham le D., Park H.S. Adult asthma biomarkers. Curr Opin Allergy Clin Immunol 2014; 14(1): 49–54, http://dx.doi.org/10.1097/ACI.0000000000000028.
  38. Lang J.E., Blake K.V. Role of biomarkers in understanding and treating children with asthma: towards personalized care. Pharmgenomics Pers Med 2013; 6: 73–84, http://dx.doi.org/10.2147/pgpm.s30626.
  39. Balabolkin I.I., Bulgakova V.A., Tyumentseva E.S. Bronchial asthma therapy in children: modern approaches to treatment. Meditsinskiy sovet 2010; 1–2: 34–39.
  40. Crompton G. A brief history of inhaled asthma therapy over the last fifty years. Prim Care Respir J 2006; 15(6): 326–331, http://dx.doi.org/10.1016/j.pcrj.2006.09.002.
  41. Kupczyk M., Dahlén B., Dahlén S.E. Which anti-inflammatory drug should we use in asthma? Pol Arch Med Wewn 2011; 121(12): 455–459.
  42. Olin J.T., Wechsler M.E. Asthma: pathogenesis and novel drugs for treatment. BMJ 2014; 349: g5517, http://dx.doi.org/10.1136/bmj.g5517.
  43. Wechsler M.E. Getting control of uncontrolled asthma. Am J Med 2014; 127(11): 1049–1059, http://dx.doi.org/10.1016/j.amjmed.2014.05.006.
  44. Shahid S.K. Newer glucocorticosteroids and corticosteroid resistance reversal in asthma. Pharm Pat Anal 2013; 2(3): 373–385, http://dx.doi.org/10.4155/ppa.13.14.
  45. Barnes P.J. Glucocorticosteroids: current and future directions. Br J Pharmacol 2011; 163(1): 29–43, http://dx.doi.org/10.1111/j.1476-5381.2010.01199.x.
  46. Emel’yanov A.V. Efficacy and safety of inhaled glucocorticosteroids. Rossiyskiy allergologicheskiy zhurnal 2005; 2: 3–21.
  47. Brown H.M., Storey G., George W.H.S. Beclomethasone dipropionate: a new steroid aerosol for the treatment of allergic asthma. Br Med J 1972; 1: 585–590, http://dx.doi.org/10.1136/bmj.1.5800.585.
  48. Nicolini G., Cremonesi G., Melani A.S. Inhaled corticosteroid therapy with nebulized beclometasone dipropionate. Pulm Pharmacol Ther 2010; 23(3): 145–155, http://dx.doi.org/10.1016/j.pupt.2009.11.003.
  49. Vaghi A., Berg E., Liljedahl S., Svensson J.O. In vitro comparison of nebulised budesonide (Pulmicort Respules) and beclomethasone dipropionate (Clenil per Aerosol). Pulm Pharmacol Ther 2005; 18(2): 151–153, http://dx.doi.org/10.1016/j.pupt.2004.10.004.
  50. Ellul-Micallef R., Hansson E., Johansson S.A. Budesonide: a new corticosteroid in bronchial asthma. Eur J Respir Dis 1980; 61(3): 167–173.
  51. Kislyak L.V., Sokolov A.S., Chuchalin A.G. Benacort in out-patient treatment of patients with bronchial asthma. Pul’monologiya 2002; 1: 90–94.
  52. Svetlakov V.I. Benacort™ is the first Russian inhaled nebulized glucocorticosteroid. Pul’monologiya 2005; 2: 113–116.
  53. Fabbri L.M., Burge P.S., Croonenborgh L., Warlies F., Weeke B., Ciaccia A., Parker C. Comparison of fluticasone propionate with beclomethasone dipropionate in moderate to severe asthma treated for one year. International Study Group. Thorax 1993; 48(8): 817–823, http://dx.doi.org/10.1136/thx.48.8.817.
  54. Buczyłko K. Safety and efficacy of inhaled ciclesonide in asthma. Pol Merkur Lekarski 2003; 14(84): 623–626.
  55. Gelfand E.W., Georgitis J.W., Noonan M., Ruff M.E. Once-daily ciclesonide in children: efficacy and safety in asthma. J Pediatr 2006; 148(3): 377–383, http://dx.doi.org/10.1016/j.jpeds.2005.10.028.
  56. Milgrom H. Mometasone furoate in children with mild to moderate persistent asthma: a review of the evidence. Paediatr Drugs 2010; 12(4): 213–221, http://dx.doi.org/10.2165/11316220-000000000-00000.
  57. Pruteanu A.I., Chauhan B.F., Zhang L., Prietsch S.O., Ducharme F.M. Inhaled corticosteroids in children with persistent asthma: dose-response effects on growth. Evid-Based Child Health 2014; 9(4): 931–1046, http://dx.doi.org/10.1002/ebch.1989.
  58. Barnes P.J., Adcock I.M. Glucocorticoid resistance in inflammatory diseases. Lancet 2009; 373(9678): 1905–1917, http://dx.doi.org/10.1016/s0140-6736(09)60326-3.
  59. Lamberts S.W. Hereditary glucocorticoid resistance. Ann Endocrinol (Paris) 2001; 62(2): 164–167.
  60. Quax R.A., Manenschijn L., Koper J.W., Hazes J.M., Lamberts S.W.J., van Rossum E.F.C., Feelders R.A. Glucocorticoid sensitivity in health and disease. Nat Rev Endocrinol 2013; 9(11): 670–686, http://dx.doi.org/10.1038/nrendo.2013.183.
  61. Barnes P.J. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol 2013; 131(3): 636–645, http://dx.doi.org/10.1016/j.jaci.2012.12.1564.
  62. Al-Ramli W., Hamid Q. Th-17 cell-related cytokines’ potential role in the pathogenesis of severe asthma. J Asthma 2008; 45(s1): 41–44, http://dx.doi.org/10.1080/02770900802594759.
  63. Duan W., Wong W.S. Targeting mitogen-activated protein kinases for asthma. Curr Drug Targets 2006; 7(6): 691–698, http://dx.doi.org/10.2174/138945006777435353.
  64. Barnes P.J. Theophylline. Am J Respir Crit Care Med 2013; 188(8): 901–906, http://dx.doi.org/10.1164/rccm.201302-0388pp.
  65. Allen A., Bareille P.J., Rousell V.M. Fluticasone furoate, a novel inhaled corticosteroid, demonstrates prolonged lung absorption kinetics in man compared with inhaled fluticasone propionate. Clin Pharmacokinet 2013; 52(1): 37–42, http://dx.doi.org/10.1007/s40262-012-0021-x.
  66. Il’ina N.I., Pavlova K.S. Efficacy and safety of Foster in patients with bronchial asthma in real clinical practice. Rossiyskiy allergologicheskiy zhurnal 2010; 5: 82–90.
  67. Papi A. Inhaled BDP/formoterol extra-fine combination. Evidence and future perspectives. Pneumologie 2009; 63(S 02): S102–S106, http://dx.doi.org/10.1055/s-0029-1214716.
  68. Papi A., Paggiaro P., Nicolini G., Vignola A.M., Fabbri L.M. Beclomethasone/formoterol vs fluticasone/salmeterol inhaled combination in moderate to severe asthma. Allergy 2007; 62(10): 1182–1188, http://dx.doi.org/10.1111/j.1398-9995.2007.01493.x.
  69. Pertseva T., Dissanayake S., Kaiser K. Superiority of fluticasone propionate/formoterol fumarate versus fluticasone propionate alone in patients with moderate-to-severe asthma: a randomised controlled trial. Current Curr Med Res Opin 2013; 29(10): 1357–1369, http://dx.doi.org/10.1185/03007995.2013.825592.
  70. Tan R.A., Corren J. Clinical utility and development of the fluticasone/formoterol combination formulation (Flutiform®) for the treatment of asthma. Drug Des Devel Ther 2014; 8: 1555–1561, http://dx.doi.org/10.2147/dddt.s36556.
  71. Woodcock A., Bleecker E.R., Lötvall J., O’Byrne P.M., Bateman E.D., Medley H., Ellsworth A., Jacques L., Busse W.W. Efficacy and safety of fluticasone furoate/vilanterol compared with fluticasone propionate/salmeterol combination in adult and adolescent patients with persistent asthma: a randomized trial. Chest 2013; 144(4): 1222–1229, http://dx.doi.org/10.1378/chest.13-0178.
  72. Berger W.E., Bensch G.W., Weinstein S.F., Skoner D.P., Prenner B.M., Shekar T., Nolte H., Teper A.A. Bronchodilation with mometasone furoate/formoterol fumarate administered by metered-dose inhaler with and without a spacer in children with persistent asthma. Pediatr Pulmonol 2014; 49(5): 441–450, http://dx.doi.org/10.1002/ppul.22850.
  73. Price D., Kaplan A., Jones R., Freeman D., Burden A., Gould S., von Ziegenweidt J., Ali M., King C., Thomas M. Long-acting muscarinic antagonist use in adults with asthma: real-life prescribing and outcomes of add-on therapy with tiotropium bromide. J Asthma Allergy 2015; 8: 1–13, http://dx.doi.org/10.2147/JAA.S76639.
  74. Price D., Fromer L., Kaplan A., van der Molen T., Román-Rodríguez M. Is there a rationale and role for long-acting anticholinergic bronchodilators in asthma? NPJ Prim Care Respir Med 2014; 24: 14023, http://dx.doi.org/10.1038/npjpcrm.2014.23.
  75. Spina D. Current and novel bronchodilators in respiratory disease. Curr Opin Pulm Med 2014; 20(1): 73–86, http://dx.doi.org/10.1097/mcp.0000000000000012.
  76. Prakash A., Babu K.S., Morjaria J.B. Profile of inhaled glycopyrronium bromide as monotherapy and in fixed-dose combination with indacaterol maleate for the treatment of COPD. Int J Chron Obstruct Pulmon Dis 2015; 10(1): 111–123, http://dx.doi.org/10.2147/copd.s67758.
  77. Lim H., Nair P. Efficacy and safety of reslizumab in patients with moderate to severe eosinophilic asthma. Expert Rev Respir Med 2015; 9(2): 135–142, http://dx.doi.org/10.1586/17476348.2015.1000867.
  78. Laviolette M., Gossage D.L., Gauvreau G., Leigh R., Olivenstein R., Katial R., Busse W.W., Wenzel S., Wu Y., Datta V., Kolbeck R., Molfino N.A. Effects of benralizumab on airway eosinophils in asthmatic patients with sputum eosinophilia. J Allergy Clin Immunol 2013; 132(5): 1086–1096, http://dx.doi.org/10.1016/j.jaci.2013.05.020.
  79. Ortega H.G., Liu M.C., Pavord I.D., Brusselle G.G., FitzGerald J.M., Chetta A., Humbert M., Katz L.E., Keene O.N., Yancey S.W., Chanez P.; MENSA Investigators. Mepolizumab treatment in patients with severe eosinophilic asthma. N Engl J Med 2014; 371(13): 1198–1207, http://dx.doi.org/10.1056/nejmoa1403290.
  80. Corren J., Lemanske R.F., Hanania N.A., Korenblat P.E., Parsey M.V., Arron J.R., Harris J.M., Scheerens H., Wu L.C., Su Z., Mosesova S., Eisner MD, Bohen S.P., Matthews J.G. Lebrikizumab treatment in adults with asthma. N Engl J Med 2011; 365(12): 1088–1098, http://dx.doi.org/10.1056/NEJMoa1106469.
  81. Antohe I., Croitoru R., Antoniu S. Tralokinumab for uncontrolled asthma. Expert Opin Biol Ther 2013; 13(2): 323–326, http://dx.doi.org/10.1517/14712598.2012.748740.
  82. Wenzel S., Ford L., Pearlman D., Spector S., Sher L., Skobieranda F., Wang L., Kirkesseli S., Rocklin R., Bock B., Hamilton J., Ming J.E., Radin A., Stahl N., Yancopoulos G.D., Graham N., Pirozzi G. Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med 2013; 368(26): 2455–2466, http://dx.doi.org/10.1056/nejmoa1304048.
  83. Barnes N., Pavord I., Chuchalin A., Bell J., Hunter M., Lewis T., Parker D., Payton M., Collins L.P., Pettipher R., Steiner J., Perkins C.M. A randomized, double-blind, placebo-controlled study of the CRTH2 antagonist OC000459 in moderate persistent asthma. Clin Exp Allergy 2012; 42(1): 38–48, http://dx.doi.org/10.1111/j.1365-2222.2011.03813.x.
  84. Pettipher R., Hunter M.G., Perkins C.M., Collins L.P., Lewis T., Baillet M., Steiner J., Bell J., Payton M.A. Heightened response of eosinophilic asthmatic patients to the CRTH2 antagonist OC000459. Allergy 2014; 69(9): 1223–1232, http://dx.doi.org/10.1111/all.12451.
  85. Bateman E.D., Kornmann O., Schmidt P., Pivovarova A., Engel M., Fabbri L.M. Tiotropium is noninferior to salmeterol in maintaining improved lung function in B16-Arg/Arg patients with asthma. J Allergy Clin Immunol 2011; 128(2): 315–322, http://dx.doi.org/10.1016/j.jaci.2011.06.004.
  86. Kerstjens H.A.M., Disse B., Schröder-Babo W., Bantje T.A., Gahlemann M., Sigmund R., Engel M., van Noord J.A. Tiotropium improves lung function in patients with severe uncontrolled asthma: a randomized controlled trial. J Allergy Clin Immunol 2011; 128(2): 308–314, http://dx.doi.org/10.1016/j.jaci.2011.04.039.
  87. Kerstjens H.A.M., Engel M., Dahl R., Paggiaro P., Beck E., Vandewalker M., Sigmund R., Seibold W., Moroni-Zentgraf P., Bateman E.D. Tiotropium in asthma poorly controlled with standard combination therapy. N Engl J Med 2012 Sep 27; 367(13): 1198–11207, http://dx.doi.org/10.1056/nejmoa1208606.
  88. Balabolkin I.I., Smirnov I.E., Lyapunov A.A., Lukina F., Goryunov A.V., Goncharova N.V., Reutova V.S. Montelukast therapy efficacy in children with bronchial asthma. Voprosy sovremennoy pediatrii 2006; 5(5): 35–39.
  89. Ciółkowski J., Mazurek H., Stasiowska B. Evaluation of step-down therapy from an inhaled steroid to montelukast in childhood asthma. Allergol Immunopathol (Madr) 2014; 42(4): 282–228, http://dx.doi.org/10.1016/j.aller.2013.01.005.
  90. Bush A. Montelukast in paediatric asthma: where we are now and what still needs to be done? Paediatr Respir Rev 2015; 16(2): 97–100, http://dx.doi.org/10.1016/j.prrv.2014.10.007.
  91. Gauvreau G.M., Boulet L.-P., Schmid-Wirlitsch C., Côté J., Duong M., Killian K.J., Milot J., Deschesnes F., Strinich T., Watson R.M., Bredenbröker D., O’Byrne P.M. Roflumilast attenuates allergen-induced inflammation in mild asthmatic subjects. Respir Res 2011; 12(1): 140, http://dx.doi.org/10.1186/1465-9921-12-140.
  92. Geppe N.A., Ozerskaya I.V. Role of cromones in bronchial asthma and allergic rhinitis therapy in children. Atmosfera. Pul’monologiya i allergologiya 2009; 1: 11–14.
  93. Howrylak J.A., Fuhlbrigge A.L., Strunk R.C., Zeiger R.S., Weiss S.T., Raby B.A. Classification of childhood asthma phenotypes and long-term clinical responses to inhaled anti-inflammatory medications. J Allergy Clin Immunol 2014; 133(5): 1286–1300, http://dx.doi.org/10.1016/j.jaci.2014.02.006.
  94. Netzer N.C., Küpper T., Voss H.W., Eliasson A.H. The actual role of sodium cromoglycate in the treatment of asthma: a critical review. Sleep Breath 2012; 16(4): 1027–1032, http://dx.doi.org/10.1007/s11325-011-0639-1.
  95. Vishneva E.A., Namazova-Baranova L.S., Alekseeva A.A., Efendieva K.E., Levina Yu.G., Voznesenskaya N.I., Tomilova A.Yu., Selimzyanova L.R., Promyslova E.A. Children asthma: key principles of obtaining control in recent times. Pediatricheskaya farmakologiya 2013; 10(4): 60–72.
  96. Tsyplenkova S.E., Mizernitsky Yu.L., Sokolova L.V., Sorokina E.V. New opportunities of monitoring the efficiency of anti-IgE therapy for severe asthma in childrens. Rossiyskiy vestnik perinatologii i pediatrii 2012; 3: 47–52.
  97. Hanania N.A., Alpan O., Hamilos D.L., Condemi J.J., Reyes-Rivera I., Zhu J., Rosen K.E., Eisner MD, Wong D.A., Busse W. Omalizumab in severe allergic asthma inadequately controlled with standard therapy: a randomized trial. Ann Intern Med 2011; 154(9): 573–582, http://dx.doi.org/10.7326/0003-4819-154-9-201105030-00002.
  98. Giovannini-Chami L., Albertini M., Scheinmann P., de Blic J. New insights into the treatment of severe asthma in children. Paediatr Respir Rev 2014, http://dx.doi.org/10.1016/j.prrv.2014.07.006.
  99. Pajno G.B., Nadeau K.C., Passalacqua G., Caminiti L., Hobson B., Jay D.C., Arasi S., Chiera F., Salzano G. The evolution of allergen and non-specific immunotherapy: past achievements, current applications and future outlook. Expert Review of Clinical Immunology 2015; 11(1): 141–154, http://dx.doi.org/10.1586/1744666X.2015.977260.
  100. Pavord I.D., Korn S., Howarth P., Bleecker E.R., Buhl R., Keene O.N., Ortega H., Chanez P. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet 2012; 380(9842): 651–659, http://dx.doi.org/10.1016/s0140-6736(12)60988-x.
  101. Grunig G., Warnock M., Wakil A.E., Venkayya R., Brombacher F., Rennick D.M., Sheppard D., Mohrs M., Donaldson D.D., Locksley R.M., Corry D.B. Requirement for IL-13 independently of IL-4 in experimental asthma. Science 1998; 282(5397): 2261–2263, http://dx.doi.org/10.1126/science.282.5397.2261.
  102. Sidhu S.S., Yuan S., Innes A.L., Kerr S., Woodruff P.G., Hou L., Muller S.J., Fahy J.V. Roles of epithelial cell-derived periostin in TGF-beta activation, collagen production, and collagen gel elasticity in asthma. Proc Natl Acad Sci USA 2010; 107(32): 14170–1475, http://dx.doi.org/10.1073/pnas.1009426107.
  103. Masuoka M., Shiraishi H., Ohta S., Suzuki S., Arima K., Aoki S., Toda S., Inagaki N., Kurihara Y., Hayashida S., Takeuchi S., Koike K., Ono J., Noshiro H., Furue M., Conway S.J., Narisawa Y., Izuhara K. Periostin promotes chronic allergic inflammation in response to Th2 cytokines. J Clin Invest 2012; 122(7): 2590–2600, http://dx.doi.org/10.1172/JCI58978.
  104. Giovannini-Chami L., Marcet B., Moreilhon C., Chevalier B., Illie M.I., Lebrigand K., Robbe-Sermesant K., Bourrier T., Michiels J.F., Mari B., Crénesse D., Hofman P., de Blic J., Castillo L., Albertini M., Barbry P. Distinct epithelial gene expression phenotypes in childhood respiratory allergy. Eur Respir J 2012; 39(5): 1197–1205, http://dx.doi.org/10.1183/09031936.00070511.
  105. Castro M., Mathur S., Hargreave F., Boulet L.P., Xie F., Young J., Wilkins H.J., Henkel T., Nair P.; Res-5-0010 Study Group. Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am J Respir Crit Care Med 2011; 184(10): 1125–1132, http://dx.doi.org/10.1164/rccm.201103-0396oc.
  106. Borish L.C., Nelson H.S., Lanz M.J., Claussen L., Whitmore J.B., Agosti J.M., Garrison L. Interleukin-4 receptor in moderate atopic asthma. A phase I/II randomized, placebo-controlled trial. Am J Respir Crit Care Med 1999; 160(6): 1816–1823, http://dx.doi.org/10.1164/ajrccm.160.6.9808146.
  107. Getz E.B., Fisher D.M., Fuller R. Human pharmacokinetics/pharmacodynamics of an interleukin-4 and interleukin-13 dual antagonist in asthma. J Clin Pharmacol 2009; 49(9): 1025–1036, http://dx.doi.org/10.1177/0091270009341183.
  108. Wenzel S., Wilbraham D., Fuller R., Getz E.B., Longphre M. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet 2007; 370(9596): 1422–1431, http://dx.doi.org/10.1016/s0140-6736(07)61600-6.
  109. Corren J., Busse W., Meltzer E.O., Mansfield L., Bensch G., Fahrenholz J., Wenzel S.E., Chon Y., Dunn M., Weng H.H., Lin S.L. A randomized, controlled, phase 2 study of AMG 317, an IL-4Ralpha antagonist, in patients with asthma. Am J Respir Crit Care Med 2010; 181(8): 788–796, http://dx.doi.org/10.1164/rccm.200909-1448oc.
  110. Parker J.M., Oh C.K., LaForce C., Miller S.D., Pearlman D.S., Le C., Robbie G.J., White W.I., White B., Molfino N.A.; MEDI-528 Clinical Trials Group. Safety profile and clinical activity of multiple subcutaneous doses of MEDI-528, a humanized anti-interleukin-9 monoclonal antibody, in two randomized phase 2a studies in subjects with asthma. BMC Pulm Med 2011; 11: 14, http://dx.doi.org/10.1186/1471-2466-11-14.
  111. Gauvreau G.M., O’Byrne P.M., Boulet L.P., Wang Y., Cockcroft D., Bigler J., FitzGerald J.M., Boedigheimer M., Davis B.E., Dias C., Gorski K.S., Smith L., Bautista E., Comeau M.R., Leigh R., Parnes J.R. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med 2014; 2102–2110, http://dx.doi.org/10.1056/nejmoa1402895.
  112. Reichert J.M. Antibodies to watch in 2015. MAbs 2015; 7(1): 1–8, http://dx.doi.org/10.4161/19420862.2015.988944.
  113. Demko I.V., Sobko E.A., Ishenko O.P., Solov’eva V.A. Clinical efficiency of specific immunotherapy in bronchial asthma. Sibirskoe meditsinskoe obozrenie 2010; 62(2): 72–76.
  114. Balabolkin I.I., Ryleeva I.V., Yukhtina N.V., Ksenzova L.D., Kapustina E.Yu. Allergen-specific immune therapy in children with allergic diseases and possibilities of efficiency improvement. Pediatriya 2006; 2: 81–85.
  115. Balabolkin I.I., Bulgakova V.A., Sedova M.S., Sentsova T.B. Allergen-specific immune therapy in children with bronchial asthma and frequent acute respiratory infections. Allergologiya i immunologiya 2007; 8: 116.
  116. Eliseeva Т.I., Knyazeva Е.V., Bochkova Y.S., Kononova S.V., Geppe N.A., Balabolkin I.I. Spirographic parameters and their change in bronchial patency variability tests in control level assessment of bronchial asthma in children. Sovremennye tehnologii v medicine 2013; 5(4): 94–101.
Eliseeva Т.I., Balabolkin I.I. Modern Technologies of Bronchial Asthma Control in Children (Review). Sovremennye tehnologii v medicine 2015; 7(2): 168, https://doi.org/10.17691/stm2015.7.2.21


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank