Today: Jan 22, 2025
RU / EN
Last update: Dec 27, 2024
The Use of Cross-Polarization OCT in Determining the Dynamics of the State of Pathological and Normal Tissues During Radiation and Photodynamic Therapy

The Use of Cross-Polarization OCT in Determining the Dynamics of the State of Pathological and Normal Tissues During Radiation and Photodynamic Therapy

Kalganova Т.I., Gubarkova E.V., Gamayunov S.V., Kiseleva Е.B., Grebenkina Е.V., Kuznetsov S.S., Finagina E.S., Shakhova N.М., Maslennikova A.V., Zagaynova E.V., Vitkin A., Gladkova N.D.
Key words: cross-polarization optical coherence tomography; CP OCT; cancer of the mouth cavity mucosa; basal-cell skin cancer; squamous cell cancer of the cervix uteri; radiation therapy; photodynamic therapy.
2015, volume 7, issue 3, page 119.

Full text

html pdf
3756
1888

The aim of the investigation was to evaluate the possibilities for using cross-polarization optical coherence tomography (CP OCT) to monitor the effectiveness of treatment of cancer of the mouth cavity and of the cervix uteri after photodynamic therapy (PDT) and radiation therapy (RT).

Materials and Methods. The CP OCT investigation was performed with an OCT-1300U (Institute of Applied Physics of the Russian Academy of Sciences, LLC “Biomedtech”, Russia) tomograph. The monitoring of the two types of treatment was performed after different periods of exposure: for RT of the mouth cavity cancer — once every 2–3 days throughout the whole course of the treatment, starting from the first day of radiation; for the PDT of the cancers of the skin and cervix uteri — before the exposure, immediately after the exposure, and then at 1 day, 7 days and 1 month after the exposure. Fourteen patients were examined in total.

Results. The results of the study of the medical pathomorphism of different kinds of tumors performed on the 14 patients showed that visual evaluation of CP OCT images of a tumor does not reveal any visible changes in response to RT, however it does register the reaction of the normal mucosa in the area exposed to the radiation. During the PDT of tumors of the skin and cervix uteri mucosa CP OCT was capable of detecting the key morphological changes (edema, necrosis, and structural recovery). It can be applied most effectively at later stages of the follow-up observation (at 30–35 days after PDT) to evaluate the completeness of the recovery of the stromal component of the tissues.

Conclusion. The use of CP OCT contributes to realization of non-invasive monitoring of the responses of tumors and the adjacent normal tissues to PDT and to RT which can be useful for evaluation of the effectiveness of therapy and to help in choosing optimal tactics for the treatment.

  1. Grabovoy A.N., Tarasova T.O., Koshubarova M.V. Histological evaluation of tumor response to chemo-/radiotherapy. Klinicheskaya onkologiya 2012; 6(2): 138–143.
  2. Tannock I.F., Lee C. Evidence against apoptosis as a major mechanism for reproductive cell death following treatment of cell lines with anti-cancer drugs. Br J Cancer 2001; 84(1): 100–105, http://dx.doi.org/10.1054/bjoc.2000.1538.
  3. Postema E.J., McEwan A.J.B., Riauka T.A., Kumar P., Richmond D.A., Abrams D.N., Wiebe L.I. Initial results of hypoxia imaging using 1-α-D-(5-deoxy-5-[18F]-fluoroarabinofuranosyl)-2-nitroimidazole (18F-FAZA). Eur J Nucl Med Mol Imaging 2009; 36(10): 1565–1573, http://dx.doi.org/10.1007/s00259-009-1154-5.
  4. Grosu A.L., Souvatzoglou M., Röper B., Dobritz M., Wiedenmann N., Jacob V., Wester H.J., Reischl G., Machulla H.J., Schwaiger M., Molls M., Piert M. Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. Int J Radiat Oncol Biol Phys 2007; 69(2): 541–551, http://dx.doi.org/10.1016/j.ijrobp.2007.05.079.
  5. Gilad A.A., Israely T., Dafni H., Meir G., Cohen B., Neeman M. Functional and molecular mapping of uncoupling between vascular permeability and loss of vascular maturation in ovarian carcinoma xenografts: the role of stroma cells in tumor angiogenesis. Int J Cancer 2005; 117(2): 202–211, http://dx.doi.org/10.1002/ijc.21179.
  6. Kiessling F., Huppert J., Zhang C., Jayapaul J., Zwick S., Woenne E.C., Mueller M.M., Zentgraf H., Eisenhut M., Addadi Y., Neeman M., Semmler W. RGD-labeled USPIO inhibits adhesion and endocytotic activity of alpha v beta3-integrin-expressing glioma cells and only accumulates in the vascular tumor compartment. Radiology 2009; 253(2): 462–469, http://dx.doi.org/10.1148/radiol.2532081815.
  7. Frascione D., Diwoky C., Almer G., Opriessnig P., Vonach C., Gradauer K., Leitinger G., Mangge H., Stollberger R., Prassl R. Ultrasmall superparamagnetic iron oxide (USPIO)-based liposomes as magnetic resonance imaging probes. Int J Nanomedicine 2012; 7: 2349–2359, http://dx.doi.org/10.2147/IJN.S30617.
  8. Tripathy D., Jiang L., Rao N., McColl R., Xie X., Weatherall P., Story M., Ding L., Mason R. Blood oxygen level dependent (BOLD) contrast MRI and breast cancer chemotherapy response. J Clin Oncol (Meeting Abstracts) 2006; 24(18 Suppl): 10514.
  9. Warren R., Hayes C., Pointon L., Hoff R., Gilbert F.J., Padhani A.R., Rubin C., Kaplan G., Raza K., Wilkinson L., Hall-Craggs M., Kessar P., Rankin S., Dixon A.K., Walsh J., Turnbull L., Britton P., Sinnatamby R., Easton D., Thompson D., Lakhani S.R., Leach M.O.; UK MRC study of MRI screening for breast cancer in women at high risk (MARIBS). A test of performance of breast MRI interpretation in a multicentre screening study. Magn Reson Imaging 2006; 24(7): 917–929, http://dx.doi.org/10.1016/j.mri.2006.03.004.
  10. Pantaleo M.A., Nannini M., Maleddu A., Fanti S., Nanni C., Boschi S., Lodi F., Nicoletti G., Landuzzi L., Lollini P.L., Biasco G. Experimental results and related clinical implications of PET detection of epidermal growth factor receptor (EGFr) in cancer. Ann Oncol 2009; 20(2): 213–226, http://dx.doi.org/10.1093/annonc/mdn625.
  11. Weber B., Winterdahl M., Memon A., Sorensen B.S., Keiding S., Sorensen L., Nexo E., Meldgaard P. Erlotinib accumulation in brain metastases from non-small cell lung cancer: visualization by positron emission tomography in a patient harboring a mutation in the epidermal growth factor receptor. J Thorac Oncol 2011; 6(7): 1287–1289, http://dx.doi.org/10.1097/JTO.0b013e318219ab87.
  12. Gupta S., Siddiqui S., Haldar P., Raj J.V., Entwisle J.J., Wardlaw A.J., Bradding P., Pavord I.D., Green R.H., Brightling C.E. Qualitative analysis of high-resolution CT scans in severe asthma. Chest 2009; 136(6): 1521–1528, http://dx.doi.org/10.1378/chest.09-0174.
  13. Bussink J., Kaanders J.H., van der Graaf W.T., Oyen W.J. PET-CT for radiotherapy treatment planning and response monitoring in solid tumors. Nat Rev Clin Oncol 2011; 8(4): 233–242, http://dx.doi.org/10.1038/nrclinonc.2010.218.
  14. Kolios M.C., Czarnota G.J., Lee M., Hunt J.W., Sherar M.D. Ultrasonic spectral parameter characterization of apoptosis. Ultrasound Med Biol 2002; 28(5): 589–597, http://dx.doi.org/10.1016/S0301-5629(02)00492-1.
  15. Tromberg B.J., Pogue B.W., Paulsen K.D., Yodh A.G., Boas D.A., Cerussi A.E. Assessing the future of diffuse optical imaging technologies for breast cancer management. Med Phys 2008; 35(6): 2443–2451, http://dx.doi.org/10.1118/1.2919078.
  16. Maslennikova A., Orlova A., Golubjatnikov G., Kamensky V., Plekhanov V., Shakhova N., Snopova L., Babaev A., Prjanikova T. Noninvasive detection of tumour’s oxygen status using diffuse optical tomography. EJC Supplements 2009; 7(2): 160, http://dx.doi.org/10.1016/S1359-6349(09)70545-2.
  17. Zhu Q., DeFusco P.A., Ricci A. Jr., Cronin E.B., Hegde P.U., Kane M., Tavakoli B., Xu Y., Hart J., Tannenbaum S.H. Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography. Radiology 2013; 266(2): 433–442, http://dx.doi.org/10.1148/radiol.12112415.
  18. Cerussi A.E., Tanamai V.W., Hsiang D., Butler J., Mehta R.S., Tromberg B.J. Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy. Philos Trans A Math Phys Eng Sci 2011; 369(1955): 4512–4530, http://dx.doi.org/10.1098/rsta.2011.0279.
  19. Chung S.H., Yu H., Su M.-Y., Cerussi A. E., Tromberg B.J. Molecular imaging of water binding state and diffusion in breast cancer using diffuse optical spectroscopy and diffusion weighted MRI. J Biomed Opt 2012; 17(7): 071304, http://dx.doi.org/10.1117/1.JBO.17.7.071304.
  20. O’Sullivan T., Leproux A., Chen J., Bahri S., Matlock A., Roblyer Darren, McLaren C.E., Chen W., Cerussi A., Su M., Tromberg B.J. Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy. Breast Cancer Rese 2013; 15(1): R14, http://dx.doi.org/10.1186/bcr3389.
  21. Ueda S., Saeki T. Near-infrared optical imaging of cancer vascular remodeling after antiangiogenic therapy. Breast Cancer 2014; 21(6): 776–769, http://dx.doi.org/10.1007/s12282-014-0534-2.
  22. Xiang L., Xing D., Gu H., Yang D., Yang S., Zeng L., Chen W.R. Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor. J Biomed Opt 2007; 12(1): 014001, http://dx.doi.org/10.1117/1.2437752.
  23. Chen B., Crane C., He C., Gondek D., Agharkar P., Savellano M.D., Hoopes P.J., Pogue B.W. Disparity between prostate tumor interior versus peripheral vasculature in response to verteporfin-mediated vascular-targeting therapy. Int J Cancer 2008; 123(3): 695–701, http://dx.doi.org/10.1002/ijc.23538.
  24. Ueda S., Roblyer D., Cerussi A., Durkin A., Leproux A., Santoro Y., Xu S., O'Sullivan T.D., Hsiang D., Mehta R., Butler J., Tromberg B.J. Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy. Cancer Res 2012; 72(17): 4318–4328, http://dx.doi.org/10.1158/0008-5472.CAN-12-0056.
  25. Huang D., Swanson E.A., Lin C.P., Schuman J.S., Stinson W.G., Chang W., Hee M.R., Flotte T., Gregory K., Puliafito C.A., et al. Optical coherence tomography. Science 1991; 254(5035): 1178–1181, http://dx.doi.org/10.1126/science.1957169.
  26. Fercher A.F., Drexler W., Hitzenberger C.K., Lasser T. Optical coherence tomography — principles and applications. Rep Prog Phys 2003; 66(22): 239–303, http://dx.doi.org/10.1088/0034-4885/66/2/204.
  27. Fomina Yu.V., Gladkova N.D., Maslennikova A.V., Urutina M.N., Radenska-Lopovok S.G., Ostrovskiy A.D., Rabinovich I.M., Feldshtein F.I. Opticheskaya kogerentnaya tomografiya v stomatologii. V kn.: Rukovodstvo po opticheskoy kogerentnoy tomografii [Optic coherence tomography in dentistry. In: Optic coherence tomography guide]. Pod red. Gladkovoy N.D., Shakhovoy N.M., Sergeeva A.M. [Gladkova N.D., Shakhova N.M., Sergeev A.M. (editors)]. Moscow: Fizmatlit, Meditsinskaya kniga; 2007; p. 203–246.
  28. Maslennikova A.V., Balalayeva I.V., Gladkova N.D., Karaboot M.M., Kiseleva Ye.B., Ixanov R.R., Ilyin N.I., Sokurenko V.N. Use of optical coherence tomography for prognosis of stage of mucositis development. Voprosy onkologii 2009; 55(5): 572–579.
  29. Davoudi B., Lindenmaier A., Standish B.A., Allo G., Bizheva K., Vitkin A. Noninvasive in vivo structural and vascular imaging of human oral tissues with spectral domain optical coherence tomography. Biomed Opt Express 2012; 3(5): 826–839, http://dx.doi.org/10.1364/BOE.3.000826.
  30. Standish B.A., Lee K.K., Jin X., Mariampillai A., Munce N.R., Wood M.F., Wilson B.C., Vitkin I.A., Yang V.X. Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study. Cancer Res 2008; 68(23): 9987–9995, http://dx.doi.org/10.1158/0008-5472.CAN-08-1128.
  31. Gelikonov V.M., Gelikonov G.V. New approach to cross-polarized optical coherence tomography based on orthogonal arbitrarily polarized modes. Laser Physics Letters 2006; 3(9): 445–451, http://dx.doi.org/10.1002/lapl.200610030.
  32. Feldchtein F.I., Gelikonov V.M., Gelikonov G.V. Polarization-sensitive common path optical coherence reflectometry/tomography device. Patent US 7,728,985 B2. 2010.
  33. The Eastern Cooperative Oncology Group. URL: http://ecog-acrin.org/resources/ecog-performance-status.
  34. Cancer Therapy Evaluation Program. Common terminology criteria for adverse events. Version 4.0. 2009. URL: http://www.nih.gov/.
  35. Tsyb A.F., Kaplan M.A., Romanenko Yu.S., et al. Klinicheskie aspekty fotodinamicheskoy terapii [Clinical aspects of photodynamic therapy]. Kaluga: Izdatel’stvo nauchnoy literatury N.F. Bochkarevoy; 2009.
Kalganova Т.I., Gubarkova E.V., Gamayunov S.V., Kiseleva Е.B., Grebenkina Е.V., Kuznetsov S.S., Finagina E.S., Shakhova N.М., Maslennikova A.V., Zagaynova E.V., Vitkin A., Gladkova N.D. The Use of Cross-Polarization OCT in Determining the Dynamics of the State of Pathological and Normal Tissues During Radiation and Photodynamic Therapy. Sovremennye tehnologii v medicine 2015; 7(3): 119, https://doi.org/10.17691/stm2015.7.3.17


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank