Quantitative Evaluation of the Polarization Characteristics of Coronary Arteries Atherosclerotic Plaques at Different Development Stages
The aim of the investigation was to develop an approach to quantitative evaluation of polarization properties (birefringence and cross-scattering) basing on cross-polarization OCT images (CP OCT) in order to characterize the development stages of atherosclerotic plaques and to reveal unstable ones.
Materials and Methods. We report on quantitative analysis of CP OCT images of the seven development stages of atherosclerotic plaques ex vivo. Integral depolarization factor (IDF) and effective birefringence coefficient (Δn) were proposed as parameters for quantitative characterization of the CP OCT images.
Results. Calculation of the IDF and Δn in the local region of interest (intima/fibrous cap) showed a statistically relevant difference between stable (stage IV) and unstable (stage Va) plaques (0.46±0.21 against 0.09±0.04 for IDF and (0.47±0.10)·10–3 against (0.25±0.07)·10–3 for Δn; (p<0.05). It was found that Δn value in the range (0.22–0.29)·10–3 (within the limits of two standard deviations) indicates the presence of only a small amount of highly organized collagen in the fibrous cap of an unstable plaque which can indicate its tendency to rupture. We believe that these changes are connected with the prevalence of disorganized fibers during the inflammatory process in the fibrous cap of an unstable plaque, and to the presence of clusters of foam cells and inflammatory cells between them.
Conclusion. The proposed approach to the quantitative evaluation of CP OCT images (calculation of IDF and building Δn maps) allows to assess both cross-scattering and birefringence of atherosclerotic plaques at various development stages and more reliably reveal their vulnerability.
- Brezinski M.E., Tearney G.J., Weissman N.J., Boppart S.A., Bouma B.E., Hee M.R., Weyman A.E., Swanson E.A., Southern J.F., Fujimoto J.G. Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound. Heart 1997; 77(5): 397–404, http://dx.doi.org/10.1136/hrt.77.5.397.
- Fujimoto J.G., Boppart S.A., Tearney G.J., Bouma B.E., Pitris C., Brezinski M.E. High resolution in vivo intra-arterial imaging with optical coherence tomography. Heart 1999; 82(2): 128–133, http://dx.doi.org/10.1136/hrt.82.2.128.
- Yabushita H., Bouma B.E., Houser S.L., Aretz H.T., Jang I.K., Schlendorf K.H., Kauffman C.R., Shishkov M., Kang D.H., Halpern E.F., Tearney G.J. Characterization of human atherosclerosis by optical coherence tomography. Circulation 2002; 106(13): 1640–1645, http://dx.doi.org/10.1161/01.CIR.0000029927.92825.F6.
- Jang I.K., Bouma B.E., Kang D.H., Park S.J., Park S.W., Seung K.B., Choi K.B., Shishkov M., Schlendorf K., Pomerantsev E., Houser S.L., Aretz H.T., Tearney G.J. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: сomparison with intravascular ultrasound. J Am Coll Cardiol 2002; 39(4): 604–609, http://dx.doi.org/10.1016/s0735-1097(01)01799-5.
- Stamper D., Weissman N.J., Brezinski M. Plaque characterization with optical coherence tomography. J Am Coll Cardiol 2006; 47(8): C69–C79, http://dx.doi.org/10.1016/j.jacc.2005.10.067.
- Brezinski M.E. Optical coherence tomography for identifying of unstable coronary plaque. Int J Cardiol 2006; 107(2): 159–170, http://dx.doi.org/10.1016/j.ijcard.2005.07.066.
- Tearney G.J., Yabushita H., Houser S.L., Aretz H.T., Jang I.K., Schlendorf K.H., Kauffman C.R., Shishkov M., Halpern E.F., Bouma B.E. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 2003; 107(1): 113–119, http://dx.doi.org/10.1161/01.cir.0000044384.41037.43.
- Tearney G.J., Jang I.K., Bouma B.Е. Optical coherence tomography for imaging the vulnerable plaque. J Biomed Opt 2006; 11(2): 021002, http://dx.doi.org/10.1117/1.2192697.
- Kubo T., Xu C., Wang Z., Ditzhuijzen N.S., Bezerra H.G. Plaque and thrombus evaluation by optical coherence tomography. Int J Cardiovasc Imaging 2011; 27(2): 289–298, http://dx.doi.org/10.1007/s10554-010-9790-1.
- Flueraru C., Popescu D.P., Mao Y., Chang S., Sowa M.G., Vitkin A. Improved arterial tissue differentiation by spectroscopic optical coherence tomography. Sovremennye tehnologii v medicine 2015; 7(1): 13–20, http://dx.doi.org/10.17691/stm2015.7.1.02.
- Nadkami S.K., Pierce M.C., Park B.H., de Boer J.F., Whittaker P., Bouma B.E., Bressner J.E., Halpern E., Houser S.L., Tearney G.J. Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography. J Am Coll Cardiol 2007; 49(13): 1474–1481, http://dx.doi.org/10.1016/j.jacc.2006.11.040.
- de Boer J.F., Milner T.E., van Gemert M.J.C., Nelson J.S. Two dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt Lett 1997; 22(12): 934–936, http://dx.doi.org/10.1364/ol.22.000934.
- Lim Y., Yamanari M., Fukuda S., Kaji Y., Kiuchi T., Miura M., Oshika T., Yasuno Y. Birefringence measurement of cornea and anterior segment by office-based polarizationsensitive optical coherence tomography. Biomed Opt Express 2011; 2(8): 2392–2402, http://dx.doi.org/10.1364/boe.2.002392.
- Liu B., Harman M., Giattina S. Characterizing of tissue microstructure with single-detector polarization-sensitive optical coherence tomography. Appl Opt 2006; 45(18): 4464–4479, http://dx.doi.org/10.1364/ao.45.004464.
- Giattina S.D., Courtney B.K., Herz P.R., Harman M., Shortkroff S., Stamper D.L., Liu B., Fujimoto J.G., Brezinski M.E. Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT). Int J Cardiol 2006; 107(3): 400–409, http://dx.doi.org/10.1016/j.ijcard.2005.11.036.
- Nadkarni S., Pierce M., Park H., deBoer J., Houser S., Bressner J., Bouma B., Tearney G. Polarization-sensitive optical coherence tomography for the analysis of collagen content in atherosclerotic plaques. Circulation 2005; 112(17): U679–U679.
- Kuo W.-C., Chou N.K., Chou C., Lai C.M., Huang H.J., Wang S.S., Shyu J.J. Polarization-sensitive optical coherence tomography for imaging human atherosclerosis. Appl Opt 2007; 46(13): 2520–2527, http://dx.doi.org/10.1364/ao.46.002520.
- Kuo W.-C., Hsiung M.-W., Shyu J.-J., Chou N.-K., Yang P.-N. Assessment of arterial characteristics in human atherosclerosis by extracting optical properties from polarization-sensitive optical coherence tomography. Opt Express 2008; 16(11): 8117–8125, http://dx.doi.org/10.1364/oe.16.008117.
- Gelikonov V.M., Gelikonov G.V. New approach to cross-polarized optical coherence tomography based on orthogonal arbitrarily polarized modes. Laser Physics Letters 2006; 3(9): 445–451, http://dx.doi.org/10.1002/lapl.200610030.
- de Boer J.F., Srinivas S.M., Nelson J.S., Milner T.E., Ducros M.G. Polarization-sensitive optical coherence tomography. In: Handbook of optical coherence tomography. Bouma B.E., Tearney G.J. (editors). CRC Press 2001; p. 237–274, http://dx.doi.org/10.1201/b14024-10.
- Kuranov R.V., Sapozhnikova V.V., Turchin I.V., Zagainova E.V., Gelikonov V.M., Kamensky V.A., Snopova L.B., Prodanetz N.N. Complementary use of cross-polarization and standard OCT for differential diagnosis of pathological tissues. Opt Express 2002; 10(15): 707–713, http://dx.doi.org/10.1364/OE.10.000707.
- Gubarkova E.V., Dudenkova V.V., Feldchtein F.I., Timofeeva L.B., Kiseleva E.B., Kuznetsov S.S., Shakhov B.E., Moiseev A.A., Gelikonov G.V., Vitkin A., Gladkova N.D. Multi-modal optical imaging characterization of atherosclerotic plaques. J Biophotonics 2015; accepted for publication 04.11.15.
- Kiseleva Е., Kirillin M., Feldchtein F., Vitkin A., Sergeeva E., Zagaynova E., Streltzova O., Shakhov B., Gubarkova E., Gladkova N. Differential diagnosis of human bladder mucosa pathologies in vivo with cross-polarization optical coherence tomography. Biomed Opt Express 2015; 6(4): 1464–1476, http://dx.doi.org/10.1364/BOE.6.001464.
- Gladkova N., Kiseleva E., Robakidze N., Balalaeva I., Karabut M., Gubarkova E., Feldchtein F. Evaluation of oral mucosa collagen condition with cross-polarization optical coherence tomography. J Biophotonics 2013; 6(4): 321–329, http://dx.doi.org/10.1002/jbio.201200059.
- Gelikonov V., Gelikonov G., Shilyagin P. Optimization of Fizeau-based optical coherence tomography with a reference Michelson interferometer. Bulletin of the Russian Academy of Sciences: Physics 2008; 72(1): 93–97.
- Gelikonov V.M., Gelikonov G.V., Shilyagin P.A. Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography. Opt Spectrosc 2009; 106(3): 459–465, http://dx.doi.org/10.1134/s0030400x09030242.
- Moiseev A.A., Gelikonov G.V., Terpelov D.A., Shilyagin P.A., Gelikonov V.M. Noniterative method of reconstruction optical coherence tomography images with improved lateral resolution in semitransparent media. Laser Physics Letters 2013; 10(12): 125601, http://dx.doi.org/10.1088/1612-2011/10/12/125601.
- Stary H.C., Chandler A.B., Dinsmore R.E., Fuster V., Glagov S., Insull W.J., Rosenfeld M.E., Schwartz C.J., Wagner W.D., Wissler R.W. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol 1995; 15(9): 1512–1531, http://dx.doi.org/10.1161/01.atv.15.9.1512.
- Virmаni R., Kolodgie Р.D., Burke А.Р., Farb A., Schwartz S.M. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000; 20(5): 1262–1275, http://dx.doi.org/10.1161/01.atv.20.5.1262.
- Ragino Y.I., Volkov A.M., Cherniavsky A.M. Stages of development of atherosclerotic hearth and types of unstable plaques — pathophysiological and histological characteristics. Rossiyskiy kardiologicheskiy zhurnal 2013; 5(103): 88–95.
- Kiseleva E.B., Gladkova N.D., Sergeeva E.A., Kirillin M. Yu., Gubarkova E.B., Karabut M.M., Balalaeva I.V., Strel’tsova O.S., Robakidze N.S., Maslennikova A.V., Kochueva M.V. Sposob otsenki funktsional’nogo sostoyaniya kollagensoderzhashchikh tkaney. Zayavka na izobretenie No.2013135571 ot 29.07.2013 [Method for evaluating the functional state of collagen tissue. The application for the invention No.2013135571 from 29.07.2013].
- Gubarkova Е.V., Kirillin М.Yu., Sergeeva E.A., Kiseleva Е.B., Snopova L.B., Prodanets N.N., Sharabrin Е.G., Shakhov Е.B., Nemirova S.V., Gladkova N.D. Cross-polarization optical coherence tomography in evaluation of atherosclerotic plaque structure. Sovremennye tehnologii v medicine 2013; 5(4): 45–55.
- Kuo W.-C. Polarization-sensitive optical coherence tomography in cardiology. In: Advances in lasers and electro optics. InTech; 2010, http://dx.doi.org/10.5772/8660.
- Tearney G.J., Regar E., Akasaka T., Adriaenssens T., Barlis P., Bezerra H.G., Bouma B., Bruining N., Cho J.-m., Chowdhary S., Costa M.A., de Silva R., Dijkstra J., Di Mario C., Dudeck D., Falk E., Feldman M.D., Fitzgerald P., Garcia H., Gonzalo N., Granada J.F., Guagliumi G., Holm N.R., Honda Y., Ikeno F., Kawasaki M., Kochman J., Koltowski L., Kubo T., Kume T., Kyono H., Lam C.C.S., Lamouche G., Lee D.P., Leon M.B., Maehara A., Manfrini O., Mintz G.S., Mizuno K., Morel M.-a., Nadkarni S., Okura H., Otake H., Pietrasik A., Prati F., Räber L., Radu M.D., Rieber J., Riga M., Rollins A., Rosenberg M., Sirbu V., Serruys P.W.J.C., Shimada K., Shinke T., Shite J., Siegel E., Sonada S., Suter M., Takarada S., Tanaka A., Terashima M., Troels T., Uemura S., Ughi G.J., van Beusekom H.M.M., van der Steen A.F.W., van Es G.-A., van Soest G., Virmani R., Waxman S., Weissman N.J., Weisz G. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies. A report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol 2012; 59(12): 1058–1072, http://dx.doi.org/10.1016/j.jacc.2011.09.079.
- Virmani R., Burke А.Р., Farb А., Kolodgie Р.D. Pathology оf unstable plaque. Prog Cardiovasc Dis 2002; 44(5): 349–356, http://dx.doi.org/10.1053/pcad.2002.122475.