Today: Nov 25, 2024
RU / EN
Last update: Oct 30, 2024
The Role of Smoking-Induced Alterations of Soluble Intercellular Adhesion Molecules in the Development of Chronic Obstructive Pulmonary Disease

The Role of Smoking-Induced Alterations of Soluble Intercellular Adhesion Molecules in the Development of Chronic Obstructive Pulmonary Disease

Makarova E.V.
Key words: chronic obstructive pulmonary disease; COPD; soluble intercellular adhesion molecules; sICAM-1; sICAM-3; smoking.
2015, volume 7, issue 4, page 105.

Full text

html pdf
4293
1866

The aim of the investigation was to study the alterations in the serum level of soluble intercellular adhesion molecules (sICAM) under the influence of smoking and to assess the role of the revealed impairment in the formation and development of chronic obstructive pulmonary disease (COPD).

Materials and Methods. The study included 82 smokers (24 women and 58 men aged 19 to 72 years) and 52 healthy non-smoking donors (17 women and 35 men aged 20 to 57 years). The smokers were divided into the following groups: 1) smokers with normal lung function (mean smoking index of 11.2±4.3 pack-years) — 32 patients; 2) smokers with airflow limitation (COPD patients) with smoking index of <30 pack-years — 17 patients; 3) smokers having airflow limitation (COPD patients) with smoking index of 30 pack-years — 33 patients. The subjects underwent clinical examination, CAT test, assessment of dyspnea (mMRC) and smoking index (pack-years), pulmonary function test (PFT), chest radiography, microscopic and microbiological examination of sputum. The serum level of soluble intercellular adhesion antigens sICAM-3 (sCD50) total and sICAM-1 (sCD54) total and oligomer were determined by enzyme immunoassay.

Results. The smokers of group 1 were found to have elevated levels of sCD54 antigens (oligomer and total) and sCD50 compared to non-smoking donors, which may reflect a stimulatory effect of tobacco smoke on cell migration into the inflammation focus. Total sCD54 antigen was higher in smoking COPD patients of group 2 than that of the donor group. There was a decrease in all tested molecules in heavy smokers, COPD patients (group 3), compared to both the control and group 2. There was found a negative correlation between the serum level of sCD50 and smoking index as well as a positive correlation between the level of total sCD54 and PFT parameters. Smoking intensity affected COPD progression. In group 3 the patients had higher mMRC dyspnea index and СAT test score; they had more exacerbations during a year, more frequent application of systemic corticosteroids and antibiotics than the patients in other groups.

Conclusion. The revealed smoking-induced alterations in the network of soluble intercellular adhesion molecules contribute to the formation and progression of obstructive disorders and chronic inflammation in COPD. Low level of soluble adhesion molecules is a marker of severe COPD with frequent exacerbations.

  1. WHO report on the global tobacco epidemic 2013. URL: http://apps.who.int/iris/bitstream/10665/85380/1/9789241505871_eng.pdf.
  2. Gane J., Stockley R. Mechanisms of neutrophil transmigration across the vascular endothelium in COPD. Thorax 2012; 67(6): 553–561, http://dx.doi.org/10.1136/thoraxjnl-2011-200088.
  3. Muller W.A. Mechanisms of leukocyte transendothelial migration. Annu Rev Pathol 2011; 6: 323–344, http://dx.doi.org/10.1146/annurev-pathol-011110-130224.
  4. Hollander C., Sitkauskiene B., Sakalauskas R., Westin U., Janciauskiene S.M. Serum and bronchial lavage fluid concentrations of IL-8, SLPI, sCD14 and sICAM-1 in patients with COPD and asthma. Respir Med 2007; 101(9): 1947–1953, http://dx.doi.org/10.1016/j.rmed.2007.04.010.
  5. Global’naya strategiya diagnostiki, lecheniya i profilaktiki khronicheskoy obstruktivnoy bolezni legkikh (peresmotr 2011 g.) [Global strategy of diagnosis, treatment and prevention of chronic obstructive pulmonary disease (revised in 2011)]. Pod red. Belevskogo A.S. [Belevskiy A.S. (editor)]. Moscow: Rossiyskoe respiratornoe obshchestvo; 2012.
  6. Lyubavina N.A., Makarova E.V., Menkov N.V., Mayorova L.V., Shonia M.L., Presnyakova N.B., Korolyeva V.V., Varvarina G.N., Novikov V.V. Clinical course of chronic obstructive pulmonary disease in dependence on smoking duration and the immune status of patients. Pul’monologiya 2013; 4: 52–55.
  7. Kubysheva N.I., Postnikova L.B., Presnyakova N.B., Korolyova V.V., Kokushkov D.V., Karaulov A.V., Novikov V.V. Soluble ICAM-1 and ICAM-3 antigens in chronic obstructive pulmonary disease. Immunologiya 2009; 30(1): 55–56.
  8. Lopez-Campos J.L., Calero C., Arellano-Orden E., Marquez-Martín E., Cejudo-Ramos P., Ortega Ruiz F., Montes-Worboys A. Increased levels of soluble ICAM-1 in chronic obstructive pulmonary disease and resistant smokers are related to active smoking. Biomark Med 2012; 6(6): 805–811, http://dx.doi.org/10.2217/bmm.12.64.
  9. Yin W., Ngwe E.C., Ghebrehiwet B., Rubenstein D.A. The combined effect of sidestream smoke and dynamic shear stress on endothelial cell inflammatory responses. Thromb Res 2015; 135(2): 362–367, http://dx.doi.org/10.1016/j.thromres.2014.11.018.
  10. Scott D.A., Todd D.H., Coward P.Y., Wilson R.F., Odell E.W., Poston R.N., Matthews J.P., Palmer R.M. The acute influence of tobacco smoking on adhesion molecule expression on monocytes and neutrophils and on circulating adhesion molecule levels in vivo. Addict Biol 2000; 5(2): 195–205, http://dx.doi.org/10.1080/13556210050003793.
  11. Noguera A., Batle S., Miralles C., Iglesias J., Busquets X., MacNee W., Agusti A.G.N. Enhanced neutrophil response in chronic obstructive pulmonary disease. Thorax 2001; 56(6): 432–437, http://dx.doi.org/10.1136/thorax.56.6.432.
  12. Schaberg T., Lauer C., Lode H., Fischer J., Haller H. Increased number of alveolar macrophages expressing adhesion molecules of the leukocyte adhesion molecule family in smoking subjects. Association with cell-binding ability and superoxide anion production. Am Rev Respir Dis 1992; 146 (5 Pt 1): 1287–1293, http://dx.doi.org/10.1164/ajrccm/146.5_Pt_1.1287.
  13. Pace E., Ferraro M., Di Vincenzo S., Bruno A., Giarratano A., Scafidi V., Lipari L., Di Benedetto D.V., Sciarrino S., Gjomarkaj M. Cigarette smoke increases BLT2 receptor functions in bronchial epithelial cells: in vitro and ex vivo evidence. Immunology 2013; 139(2): 245–255, http://dx.doi.org/10.1111/imm.12077.
  14. Lee I.-T., Yang C.-M. Inflammatory signalings involved in airway and pulmonary diseases. Mediators Inflamm 2013; 2013: 791231, http://dx.doi.org/10.1155/2013/791231.
  15. McKeown S.J., Wallace A.S., Anderson R.B. Expression and function of cell adhesion molecules during neural crest migration. Dev Biol 2013; 373(2): 244–257, http://dx.doi.org/10.1016/j.ydbio.2012.10.028.
  16. Abadier M., Haghayegh Jahromi N., Cardoso Alves L., Boscacci R., Vestweber D., Barnum S., Deutsch U., Engelhardt B., Lyck R. Cell surface levels of endothelial ICAM-1 influence the transcellular or paracellular T-cell diapedesis across the blood-brain barrier. Eur J Immunol 2015; 45(4): 1043–1058, http://dx.doi.org/10.1002/eji.201445125.
  17. Othumpangat S., Regier M., Piedimonte G. Nerve growth factor modulates human rhinovirus infection in airway epithelial cells by controlling ICAM-1 expression. Am J Physiol Lung Cell Mol Physiol 2012; 302(10): L1057–L1066, http://dx.doi.org/10.1152/ajplung.00365.2011.
  18. Hafezi-Moghadam A., Thomas K.L., Prorock A.J., Huo Y., Ley K. L-selectin shedding regulates leukocyte recruitment. J Exp Med 2001; 193(7): 863–872, http://dx.doi.org/10.1084/jem.193.7.863.
  19. Zandvoort A., van der Geld Y.M., Jonker M.R., Noordhoek J.A., Vos J.T., Wesseling J., Kauffman H.F., Timens W., Postma D.S. High ICAM-1 gene expression in pulmonary fibroblasts of COPD patients: a reflection of an enhanced immunological function. Eur Respir J 2006; 28(1): 113–122, http://dx.doi.org/10.1183/09031936.06.00116205.
  20. Lundberg A.H., Fukatsu K., Gaber L., Callicutt S., Kotb M., Wilcox H., Kudsk K., Gaber A.O. Blocking pulmonary ICAM-1 expression ameliorates lung injury in established diet-induced pancreatitis. Ann Surg 2001; 233(2): 213–220, http://dx.doi.org/10.1097/00000658-200102000-00010.
  21. Scott D.A., Palmer R.M. The influence of tobacco smoking on adhesion. Tob Induc Dis 2002; 1(1): 7–25, http://dx.doi.org/10.1186/1617-9625-1-1-7.
  22. Becker A., van Hinsbergh V.W.M., Jager A.,Kostense P.J., Dekker J.M., Nijpels G., Heine R.J., Bouter L.M., Stehouwer C.D.A. Why is soluble intercellular adhesion molecule-1 related to cardiovascular mortality? Eur J Clin Invest 2002; 32(1): 1–8, http://dx.doi.org/10.1046/j.1365-2362.2002.00919.x.
  23. Shavelle D.M., Katz R., Takasu J., Lima J.A., Jenny N.S., Budoff M.J., O’Brien K.D. Soluble intercellular adhesion molecule-1 (sICAM-1) and aortic valve calcification in the multi-ethnic study of atherosclerosis (MESA). J Heart Valve Dis 2008; 17(4): 388–395.
  24. Grothey A., Heistermann P., Philippou S., Voigtmann R. Serum levels of soluble intercellular adhesion molecule-1 (ICAM-1, CD54) in patients with non-small-cell lung cancer: correlation with histological expression of ICAM-1 and tumour stage. Br J Cancer 1998; 77(5): 801–807, http://dx.doi.org/10.1038/bjc.1998.130.
  25. Alexiou D., Karayiannakis A.J., Syrigos K.N., Zbar A., Sekara E., Michail P., Rosenberg T., Diamantis T. Clinical significance of serum levels of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in gastric cancer patients. Am J Gastroenterol 2003; 98(2): 478–485, http://dx.doi.org/10.1111/j.1572-0241.2003.07259.x.
  26. Aaron C.P., Schwartz J.E., Bielinski S.J., Hoffman E.A., Austin J.H., Oelsner E.C., Donohue K.M., Kalhan R., Berardi C., Kaufman J.D., Jacobs D.R. Jr., Tracy R.P., Barr R.G. Intercellular adhesion molecule 1 and progression of percent emphysema: the MESA Lung Study. Respir Med 2014; 109(2): 255–264, http://dx.doi.org/10.1016/j.rmed.2014.10.004.
  27. Lee J.S., Shin J.H., Choi B.S. Serum levels of IL-8 and ICAM-1 as biomarkers for progressive massive fibrosis in coal workers’ pneumoconiosis. J Korean Med Sci 2015; 30(2): 140–144, http://dx.doi.org/10.3346/jkms.2015.30.2.140.
  28. Kanoh S., Rubin B. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin Microbiol Rev 2010; 23(3): 590–615, http://dx.doi.org/10.1128/CMR.00078-09.
  29. Barnes P.J. Glucocorticosteroids: current and future directions. Br J Pharmacol 2011; 163(1): 29–43, http://dx.doi.org/10.1111/j.1476-5381.2010.01199.x.
  30. Lyubavina N.A., Varvarina G.N., Makarova E.V., Menkov N.V., Belyaeva E.V., Ermolina G.B., Presnyakova N.B., Korolyova V.V., Filatova E.N., Kurnickov G.Yu., Noviсkov V.V. Serous content of adhesion soluble antigen as a marker of the chronic obstructive pulmonary disease progressing. Sovremennye tehnologii v medicine 2011; (1): 67–71.
  31. Svirshchevskaya E.V., Matushevskaya E.V. Comparative analysis of efficacy and safety of fluoridated and chlorinated topical glucocorticosteroids Sovremennye problemy dermatovenerologii, immunologii i vrachebnoy kosmetologii 2010; 3: 75–78.
  32. Matera M.G., Cardaci V., Cazzola M., Rogliani P. Safety of inhaled corticosteroids for treating chronic obstructive pulmonary disease. Expert Opin Drug Saf 2015; 14(4): 533–541, http://dx.doi.org/10.1517/14740338.2015.1001363.
  33. Barnes P.J. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol 2013; 131(3): 636–645, http://dx.doi.org/10.1016/j.jaci.2012.12.1564.
  34. Huang J., Wan D., Li J., Chen H., Huang K., Zheng L. Histone acetyltransferase PCAF regulates inflammatory molecules in the development of renal injury. Epigenetics 2014; 10(1): 62–72, http://dx.doi.org/10.4161/15592294.2014.990780.
  35. Oddera S., Silvestri M., Lantero S., Sacco O., Rossi G.A. Downregulation of the expression of intercellular adhesion molecule (ICAM)-1 on bronchial epithelial cells by fenoterol, a beta2-adrenoceptor agonist. J Asthma 1998; 35(5): 401–408, http://dx.doi.org/10.3109/02770909809048948.
  36. Yamaya M., Nishimura H., Hatachi Y., Yasuda H., Deng X., Sasaki T., Kubo H., Nagatomi R. Inhibitory effects of tiotropium on rhinovirus infection in human airway epithelial cells. Eur Respir J 2012; 40(1): 122–132, http://dx.doi.org/10.1183/09031936.00065111.
  37. Yamaya M., Nishimura H., Nadine L.K., Ota C., Kubo H., Nagatomi R. Ambroxol inhibits rhinovirus infection in primary cultures of human tracheal epithelial cells. Arch Pharm Res 2014; 37(4): 520–529, http://dx.doi.org/10.1007/s12272-013-0210-7.
  38. Pang B., Hong W., West-Barnette S.L., Kock N.D., Swords W.E. Diminished ICAM-1 expression and impaired pulmonary clearance of nontypeable Haemophilus influenzae in a mouse model of chronic obstructive pulmonary disease/emphysema. Infect Immun 2008; 76(11): 4959–4967, http://dx.doi.org/10.1128/IAI.00664-08.
  39. Khronicheskaya obstruktivnaya bolezn’ legkikh [Chronic obstructive pulmonary disease]. Pod red. Chuchalina A.G. [Chuchalin A.G. (editor)]. Moscow: Atmosfera; 2008; 568 p.
Makarova E.V. The Role of Smoking-Induced Alterations of Soluble Intercellular Adhesion Molecules in the Development of Chronic Obstructive Pulmonary Disease. Sovremennye tehnologii v medicine 2015; 7(4): 105, https://doi.org/10.17691/stm2015.7.4.14


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank