Today: Jan 22, 2025
RU / EN
Last update: Dec 27, 2024
Predicting the Outcomes of Transcatheter Aortic Valve  Prosthesis Implantation Based on the Finite Element Analysis  and Microcomputer Tomography Data

Predicting the Outcomes of Transcatheter Aortic Valve Prosthesis Implantation Based on the Finite Element Analysis and Microcomputer Tomography Data

Ovcharenko E.A., Klyshnikov K.U., Savrasov G.V., Batranin A.V., Ganykov V.I., Kokov A.N., Nushtaev D.V., Dolgov V.Y., Kudryavtseva Y.A., Barbarash L.S.
Key words: patient-specific modeling; finite element method; transcatheter aortic valve prosthesis; implantation modeling.
2016, volume 8, issue 1, page 82.

Full text

html pdf
2647
2059

The aim of the investigation is to assess the possibility of predicting the outcome of transcatheter aortic valve prosthesis implantation in real clinical practice on the basis of patient-specific modeling.

Material and Methods. Modeling of transcatheter bioprosthesis implantation was carried out based on clinical data of a patient aged 72 years. Multispiral computed tomography (CT) was performed before and after the operative intervention. Reconstruction of aorta and valvular apparatus geometry was done on the basis of obtained slices using computer-aided design (CAD). With the help of microcomputer tomography and a series of projection images and mathematical algorithms a 3D-model of the frame was reconstructed, on which a 3D-mesh from 17,000 cubic (C3D8)-elements was built. Simulation of the system component interaction was conducted using a finite element method involving a number of successive steps: preliminary balloon dilatation — frame compression in the catheter — releasing the frame from the catheter. To evaluate the accuracy of modeling results compared to the CT data of the patient with the implanted bioprosthesis a proprietary algorithm was developed using MATLAB R2014a software (The MathWorks, USA). Arrays of points corresponding to the center of the supporting frame beams, obtained in 11 orthogonal sections, were used as input data.

Results. Peculiarities of patient-specific approach to modeling the implantation of transcatheter CoreValve bioprothesis by means of the developed bioinformation algorithm has been analyzed. We managed to achieve a high convergence of simulation and CT data for the frame inflow area (the difference of the simulation results for the first three layers did not exceed 4%). Comparison of the results in terms of the annulus area has also demonstrated a high convergence: the identity amounted to more than 90% for the inflow and middle zones of the supporting frame.

Conclusion. The highest level of detail, including calcium conglomerates modeling, as well as a comprehensive description of nonlinear elements of the system under study accurately reproduces the process of implantation of the transcatheter aortic valve prosthesis.

  1. Mortier P., Holzapfel G.A., De Beule M., Van Loo D., Taeymans Y., Segers P., Verdonck P., Verhegghe B. A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: comparison of three drug-eluting stents. Ann Biomed Eng 2010; 38(1): 88–99, http://dx.doi.org/10.1007/s10439-009-9836-5.
  2. Zajarias A., Cribier A.G. Outcomes and safety of percutaneous aortic valve replacement. J Am Coll Cardiol 2009; 53(20): 1829–1836, http://dx.doi.org/10.1016/j.jacc.2008.11.059.
  3. Russ C., Hopf R., Hirsch S., Sündermann S., Falk V., Székely G., Gessat M. Simulation of transcatheter aortic valve implantation under consideration of leaflet calcification. Conf Proc IEEE Eng Med Biol Soc 2013; 2013: 711–714, http://dx.doi.org/10.1109/EMBC.2013.6609599.
  4. Généreux P., Head S.J., Hahn R., Daneault B., Kodali S., Williams M.R., van Mieghem N.M., Alu M.C., Serruys P.W., Kappetein A.P., Leon M.B. Paravalvular leak after transcatheter aortic valve replacement: the new Achilles’ heel? A comprehensive review of the literature. J Am Coll Cardiol 2013; 61(11): 1125–1136, http://dx.doi.org/10.1016/j.jacc.2012.08.1039.
  5. Cribier A., Eltchaninoff H., Bash A., Borenstein N., Tron C., Bauer F., Derumeaux G., Anselme F., Laborde F., Leon M.B. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation 2002; 106(24): 3006–3008, http://dx.doi.org/10.1161/01.cir.0000047200.36165.b8.
  6. Buellesfeld L., Wenaweser P., Gerckens U., Mueller R., Sauren B., Latsios G., Zickmann B., Hellige G., Windecker S., Grube E. Transcatheter aortic valve implantation: predictors of procedural success — the Siegburg–Bern experience. Eur Heart J 2010; 31(8): 984–991, http://dx.doi.org/10.1093/eurheartj/ehp570.
  7. Ovcharenko E.A., Klyshnikov K.U., Glushkova T.V., Burago A.U., Zhuravleva I.U. Nonlinear isotropic material model of human aortic root. Tekhnologii zhivykh sistem 2014; 6: 43–47.
  8. Ovcharenko E.A., Klyshnikov K.Y., Zhuravleva I.Y. Effect of the «3f enable» stent deformation on the hydrodynamic parameters. Klinicheskaya fiziologiya krovoobrashcheniya 2014; 2: 41–47.
  9. Auricchio F., Conti M., Morganti S., Reali A. Simulation of transcatheter aortic valve implantation: a patient-specific finite element approach. Comput Methods Biomech Biomed Engin 2014; 17(12): 1347–1357, http://dx.doi.org/10.1080/10255842.2012.746676.
  10. Schultz C.J., Weustink A., Piazza N., Otten A., Mollet N., Krestin G., van Geuns R.J., de Feyter P., Serruys P.W., de Jaegere P. Geometry and degree of apposition of the CoreValve ReValving system with multislice computed tomography after implantation in patients with aortic stenosis. J Am Coll Cardiol 2009; 54(10): 911–918, http://dx.doi.org/10.1016/j.jacc.2009.04.075.
  11. Capelli C., Bosi G.M., Cerri E., Nordmeyer J., Odenwald T., Bonhoeffer P., Migliavacca F., Taylor A.M., Schievano S. Patient-specific simulations of transcatheter aortic valve stent implantation. Med Biol Eng Comput 2012; 50(2): 183–192, http://dx.doi.org/10.1007/s11517-012-0864-1.
  12. Wang Q., Sirois E., Sun W. Patient-specific modeling of biomechanical interaction in transcatheter aortic valve deployment. J Biomech 2012; 45(11): 1965–1971, http://dx.doi.org/10.1016/j.jbiomech.2012.05.008.
  13. Halevi R., Hamdan A., Marom G., Mega M., Raanani E., Haj-Ali R. Progressive aortic valve calcification: three-dimensional visualization and biomechanical analysis. J Biomech 2015; 48(3): 489–497, http://dx.doi.org/10.1016/j.jbiomech.2014.12.004.
  14. Tzamtzis S., Viquerat J., Yap J., Mullen M.J., Burriesci G. Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). Med Eng Phys 2013; 35(1): 125–130, http://dx.doi.org/10.1016/j.medengphy.2012.04.009.
  15. Li K., Sun W. Simulated thin pericardial bioprosthetic valve leaflet deformation under static pressure-only loading conditions: implications for percutaneous valves. Ann Biomed Eng 2010; 38(8): 2690–2701, http://dx.doi.org/10.1007/s10439-010-0009-3.
  16. Détaint D., Lepage L., Himbert D., Brochet E., Messika-Zeitoun D., Iung B., Vahanian A. Determinants of significant paravalvular regurgitation after transcatheter aortic valve: implantation impact of device and annulus discongruence. JACC Cardiovasc Interv 2009; 2(9): 821–827, http://dx.doi.org/10.1016/j.jcin.2009.07.003.
  17. Morganti S., Conti M., Aiello M., Valentini A., Mazzola А., Reali A., Auricchio F. Simulation of transcatheter aortic valve implantation through patient-specific finite element analysis: two clinical cases. J Biomech 2014; 47(11): 2547–2555, http://dx.doi.org/10.1016/j.jbiomech.2014.06.007.
  18. Hamdan A., Guetta V., Konen E., Goitein O., Segev A., Raanani E., Spiegelstein D., Hay I., Di Segni E., Eldar M., Schwammenthal E. Deformation dynamics and mechanical properties of the aortic annulus by 4-dimensional computed tomography: insights into the functional anatomy of the aortic valve complex and implications for transcatheter aortic valve therapy. J Am Coll Cardiol 2012; 59(2): 119–127, http://dx.doi.org/10.1016/j.jacc.2011.09.045.
  19. Wong D.T., Bertaso A.G., Liew G.Y., Thomson V.S., Cunnington M.S., Richardson J.D., Gooley R., Lockwood S., Meredith I.T., Worthley M.I., Worthley S.G. Relationship of aortic annular eccentricity and paravalvular regurgitation post transcatheter aortic valve implantation with CoreValve. J Invasive Cardiol 2013; 25(4): 190–195.
  20. Kalejs M., von Segesser L.K. Rapid prototyping of compliant human aortic roots for assessment of valved stents. Interact Cardiovasc Thorac Surg 2009; 8(2): 182–186, http://dx.doi.org/10.1510/icvts.2008.194134.
  21. Baillargeon B., Rebelo N., Fox D.D., Taylor R.L., Kuhl E. The living heart project: a robust and integrative simulator for human heart function. Eur J Mech A Solids 2014; 48: 38–47, http://dx.doi.org/10.1016/j.euromechsol.2014.04.001.
  22. Ovcharenko E.A., Klyshnikov K.U., Savrasov G.V., Nyshtaev D.V., Glushkova T.V. The choosing of optimal cell parameters of transcatheter aortic valve pros-thesis. Komp’yuternye issledovaniya i modelirovanie 2014; 6(6): 943–954.
Ovcharenko E.A., Klyshnikov K.U., Savrasov G.V., Batranin A.V., Ganykov V.I., Kokov A.N., Nushtaev D.V., Dolgov V.Y., Kudryavtseva Y.A., Barbarash L.S. Predicting the Outcomes of Transcatheter Aortic Valve Prosthesis Implantation Based on the Finite Element Analysis and Microcomputer Tomography Data. Sovremennye tehnologii v medicine 2016; 8(1): 82, https://doi.org/10.17691/stm2016.8.1.11


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank