Today: Jan 22, 2025
RU / EN
Last update: Dec 27, 2024
Transformation of Patient’s EEG Oscillators into Music-Like Signals for Correction of Stress-Induced Functional States

Transformation of Patient’s EEG Oscillators into Music-Like Signals for Correction of Stress-Induced Functional States

Fedotchev A.I., Bondar A.T., Bakhchina A.V., Grigorieva V.N., Katayev A.A., Parin S.B., Radchenko G.S., Polevaya S.A.
Key words: neurobiocontrol; EEG oscillators; transformation of EEG into music-like signals; correction of functional disorders.
2016, volume 8, issue 1, page 93.

Full text

html pdf
2038
2220

The aim of the investigation was to compare efficacy of three variants of musical neurobiocontrol technology, involving transformation of the current values of the patient’s EEG oscillators into music-like signals in correcting stress-induced functional state.

Materials and Methods. 15 volunteers, being in the stress condition, were subject to three examinations. In the first one the examinees were presented music-like signals, resembling the sounds of a flute by its timbre, which were smoothly varying in pitch and intensity in direct relation to the current amplitude of the spectral component of EEG — EEG oscillator — dominating in the subject. In two other examinations the same transformations of EEG were supplemented by the introduction of musical elements: rhythm and beat. Objective (shifts of EEG-alpha rhythm intensity relative to the background) and subjective (results of all tests before and after the exposure) criteria of efficacy were used in the study.

Results. Under the influence of therapeutic procedures the increase of EEG-alpha rhythm intensity against the background was noted, accompanied by the growth of health and mood indicators, reduction of emotional disadaptation degree and the level of stressedness in the examined persons. The most prominent effects were revealed when presented sound signals were structured, especially by introducing 1 Hz rhythm in them.

Conclusion. Transformation of the current values of patient’s EEG oscillators into music-like signals is supposed to be a perspective way of improving the efficacy of biocontrol procedures in correcting various functional disorders.

  1. Poletaev A.B., Grinko O.V. Preventive medicine: introduction to the problem. Terra Medica 2012; 4: 4–8.
  2. Ushakov I.B., Bubeev Yu.A., Kvasovets S.V., Ivanov A.V. Radiation physiology of higher nervous activity: results and perspectives. Rossiyskiy fiziologicheskiy zhurnal im. I.M. Sechenova 2012; 98(1): 83–94.
  3. Runova E.V., Grigoreva V.N., Bakhchina А.V., Parin S.B., Shishalov I.S., Kozhevnikov V.V., Nekrasova M.M., Karatushina D.I., Grigoreva K.А., Polevaya S.А. Vegetative correlates оf conscious representation оf emotional stress. Sovremennye tehnologii v medicine 2013; 5(4): 69–77.
  4. Fedotchev A.I. Stress, its consequence for a man and modern non-pharmaceutical approaches to their elimination. Uspekhi fiziologicheskikh nauk 2009; 40(1): 102–115.
  5. Grigorieva V.N. Cognitive rehabilitation — a new direction of medical aid to patients with the brain focal lesions. Sovremennye tehnologii v medicine 2010; 2: 95–99.
  6. Kaplan A.Ya., Kochetova A.G., Shishkin S.L., Basyul I.A., Ganin I.P., Vasilev A.N., Liburkina S.P. Experimental and theoretical foundations and practical implementation of technology brain-computer interface. Byulleten’ sibirskoy meditsiny 2013; 12(2): 21–29.
  7. Wood G., Kober S.E., Witte M., Neuper C. On the need to better specify the concept of “control” in brain-computer-interfaces/neurofeedback research. Front Syst Neurosci 2014; 8: 171, http://dx.doi.org/10.3389/fnsys.2014.00171.
  8. Huster R.J., Mokom Z.N., Enriquez-Geppert S., Herrmann C.S. Brain-computer interfaces for EEG neurofeedback: peculiarities and solutions. Int J Psychophysiol 2014; 91(1); 36–45, http://dx.doi.org/10.1016/j.ijpsycho.2013.08.011.
  9. Gruzelier J.H. EEG-neurofeedback for optimising performance. III: a review of methodological and theoretical considerations. Neurosci Biobehav Rev 2014; 44(2): 159–182, http://dx.doi.org/10.1016/j.neubiorev.2014.03.015.
  10. Fedotchev A.I., Oh S.J., Semikin G.I. Combination of neurofeedback technique with music therapy for effective correction of stress-induced disorders. Sovremennye tehnologii v medicine 2014; 6(3): 60–63.
  11. Müller W., Haffelder G., Schlotmann A., Schaefers A.T., Teuchert-Noodt G. Amelioration of psychiatric symptoms through exposure to music individually adapted to brain rhythm disorders — a randomised clinical trial on the basis of fundamental research. Cogn Neuropsychiatry 2014: 19(5): 399–413, http://dx.doi.org/10.1080/13546805.2013.879054.
  12. Doskin V.A., Lavrent’eva N.A., Miroshnikov M.N., Sharay V.V. Test for differential self-assessment of functional state. Voprosy psikhologii 1973; 6: 141–145.
  13. Grigor'eva V.M., Tkhostov A.Sh. Sposob otsenki emotsional’nogo sostoyaniya cheloveka [Method for assessing human emotional state]. Patent RF №2291720 S1. 2007.
  14. Fedotchev A.I., Bondar’ A.T., Semenov V.S. Nelekarstvennaya korrektsiya funktsional’nykh rasstroystv u cheloveka. Printsip dvoynoy obratnoy svyazi ot EEG ostsillyatorov patsienta [Non-pharmaceutical correction of human functional disorders. The concept of double feedback rom patient’s EEG oscillators]. Saarbrucken: LAP Lamberts Academic Publishing; 2010.
  15. Bazanova O.M., Vernon D. Interpreting EEG alpha activity. Neurosci Biobehav Rev 2014; 44: 94–110, http://dx.doi.org/10.1016/j.neubiorev.2013.05.007.
  16. Koelsch S. Brain correlates of music-evoked emotions. Nat Rev Neurosci 2014; 15(3): 170–180, http://dx.doi.org/10.1038/nrn3666.
  17. Volchek O.D. Znachenie muzyki i semantika ee zvukov [Significance of music and semantics of its sounds]. Moscow: Folium; 2014.
  18. Radstaak M., Geurts S.A., Brosschot J.F., Kompier M.A. Music and psychophysiological recovery from stress. Psychosom Med 2014; 76(7): 529–537, http://dx.doi.org/10.1097/PSY.0000000000000094.
  19. Frederick J.A. Psychophysics of EEG alpha state discrimination. Conscious Cogn 2012; 21(3): 1345–1354, http://dx.doi.org/10.1016/j.concog.2012.06.009.
  20. Smith R., Rathcke T., Cummins F., Overy K., Scott S. Communicative rhythms in brain and behaviour. Philos Trans R Soc Lond B Biol Sci 2014; 369(1658): 20130389, http://dx.doi.org/10.1098/rstb.2013.0389.
  21. Alexeeva M.V., Muravlyova K.B., Sapina E.V., Bazanova O.M., Balioz N.V. Training for voluntarily increasing individual upper α power as a method for cognitive enhancement. Fiziologiya cheloveka 2012; 38(1): 51–60.
Fedotchev A.I., Bondar A.T., Bakhchina A.V., Grigorieva V.N., Katayev A.A., Parin S.B., Radchenko G.S., Polevaya S.A. Transformation of Patient’s EEG Oscillators into Music-Like Signals for Correction of Stress-Induced Functional States. Sovremennye tehnologii v medicine 2016; 8(1): 93, https://doi.org/10.17691/stm2016.8.1.12


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank