Today: Dec 27, 2024
RU / EN
Last update: Dec 27, 2024
The Relation of Biological Properties of the Silk Fibroin/Gelatin Scaffolds with the Composition and Fabrication Technology

The Relation of Biological Properties of the Silk Fibroin/Gelatin Scaffolds with the Composition and Fabrication Technology

Sokolova A.I., Bobrova M.M., Safonova L.A., Agapova O.I., Moisenovich M.M., Agapov I.I.
Key words: biodegradable scaffolds; silk fibroin; gelatin; electrospinning.
2016, volume 8, issue 3, page 6.

Full text

html pdf
3231
3586

The aim of the investigation was to research the effect of preparation method and composition of silk fibroin and gelatin scaffolds on biological properties.

Materials and Methods. Silk fibroin, gelatin and their blend with different mass ratio scaffolds were prepared by electrospinning. To research scaffold’s structure light microscopy, scanning electron microscopy and confocal laser scanning microscopy were applied. Adhesion and proliferation of mice fibroblast 3T3 cell line were investigated to test biocompatibility of constructed scaffolds.

Results. Optimal parameters of device and fiber obtaining parameters were selected. Fibrous porous three-dimensional structure of investigated scaffolds was revealed. It was established that cell proliferative activity on electrospun scaffolds was significantly higher than on casting films. Addition of gelatin to scaffold composition increases cell proliferation.

Conclusions. Electrospun silk fibroin/gelatin scaffolds contain such polymers with mass ratio equal to 1:3 have significant greater ability to maintain cell and proliferation than fibroin and gelatin scaffolds.

  1. Vepari C., Kaplan D.L. Silk as a biomaterial. Prog Polym Sci 2007; 32(8–9), 99–1007, http://dx.doi.org/10.1016/j.progpolymsci.2007.05.013.
  2. Kasoju N., Bora U. Silk fibroin based biomimetic artificial extracellular matrix for hepatic tissue engineering applications. Biomed Mater 2012; 7(4): 045004, http://dx.doi.org/10.1088/1748-6041/7/4/045004.
  3. Kim U.J., Park J., Kim H.J., Wada M., Kaplan D.L. Three dimensional aqueous-derived biomaterial scaffold from silk fibroin. Biomaterials 2005; 26(15): 2775–2785, http://dx.doi.org/10.1016/j.biomaterials.2004.07.044.
  4. Baran E.T., Tuzlakoğlu K., Mano J.F., Reis R.L. Enzymatic degradation behavior and cytocompatibility of silk fibroin–starch–chitosan conjugate membranes. Mater Sci Eng C Mater Biol Appl 2012; 32(6): 1314–1322, http://dx.doi.org/10.1016/j.msec.2012.02.015.
  5. Moisenovich M.M., Arkhipova A.Y., Orlova A.A., Drutskaya M.S., Volkova S.V., Zacharov S.E., Agapov I.I., Kirpichnikov M.P. Composite scaffolds containing silk fibroin, gelatin, and hydroxyapatite for bone tissue regeneration and 3D cell culturing. Acta Naturae 2014; 6(1): 96–101.
  6. Agapov I.I., Moisenovich M.M., Druzhinina T.V., Kamenchuk Y.A., Trofimov K.V., Vasilyeva T.V., Konkov A.S., Arhipova A.Y., Sokolova O.S., Guzeev V.V., Kirpichnikov M.P. Biocomposite scaffolds containing regenerated silk fibroin and nanohydroxyapatite for bone tissue regeneration. Dokl Biochem Biophys 2011; 440: 228–230, http://dx.doi.org/10.1134/s1607672911050103.
  7. Ramakrishna S., Fujihara K., Teo W.E., Lim T.C., Ma Z. An introduction to electrospinning and nanofibers. Singapore: World Scientific; 2005, http://dx.doi.org/10.1142/9789812567611.
  8. Hu Z., Ma Z., Peng M., He X., Zhang H., Li Y., Qiu J. Composite film polarizer based on the oriented assembly of electrospun nanofibers. Nanotechnology2016; 27(13): 135301, http://dx.doi.org/10.1088/0957-4484/27/13/135301.
  9. Vasita R.,Katti D.S. Nanofibers and their applications in tissue engineering. Int J Nanomedicine2006, 1(1): 15–30, http://dx.doi.org/10.2147/nano.2006.1.1.15.
  10. Orr S.B., Chainani A., Hippensteel K.J., Kishan A., Gilchrist C., Garrigues N.W., Ruch D.S., Guilak F., Little D. Aligned multilayered electrospun scaffolds for rotator cufftendontissue engineering. Acta Biomater2015;24: 117–126, http://dx.doi.org/10.1016/j.actbio.2015.06.010.
  11. BraghirolliD.I.,Steffens D.,Pranke P. Electrospinning for regenerative medicine: a review of the main topics. Drug Discov Today 2014; 19(6): 743–753, http://dx.doi.org/10.1016/j.drudis.2014.03.024.
  12. Zhou J., Cao C., Ma X., Lin J. Electrospinningof silk fibroin and collagen for vascular tissue engineering. Int J Biol Macromol 2010; 47(4): 514–519, http://dx.doi.org/10.1016/j.ijbiomac.2010.07.010.
  13. Catto V., Farè S., Cattaneo I., Figliuzzi M., Alessandrino A., Freddi G., Remuzzi A., Tanzi M.C. Small diameter electrospun silk fibroin vascular grafts: mechanical properties, in vitro biodegradability, and in vivo biocompatibility. Mater Sci Eng C Mater Biol Appl 2015; 54: 101–111, http://dx.doi.org/10.1016/j.msec.2015.05.003.
  14. Elsayed Y., Lekakou C., Labeed F., Tomlins P. Fabrication and characterisation of biomimetic, electrospun gelatin fibre scaffolds for tunica media-equivalent, tissue engineered vascular grafts. Mater Sci Eng C Mater Biol Appl 2015; 61: 473–483, http://dx.doi.org/10.1016/j.msec.2015.12.081.
  15. Moroni L., Schotel R., Sohier J., de Wijn J.R., van Blitterswijk C.A. Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness. Biomaterials 2006; 27(35): 5918–5926, http://dx.doi.org/10.1016/j.biomaterials.2006.08.015.
  16. Lu S., Wang P., Zhang F., Zhou X., Zuo B., You X., Gao Y., Liu H., Tang H. A novel silk fibroin nanofibrous membrane for guided bone regeneration: a study in rat calvarial defects. Am J Transl Res 2015; 7(11): 2244–2253.
  17. Katoch A., Choi S.W., Sun G.J., Kim H.W., Kim S.S. Mechanism and prominent enhancement of sensing ability to reducing gases in p/n core-shell nanofiber. Nanotechnology 2014; 25(17): 175501, http://dx.doi.org/10.1088/0957-4484/25/17/175501.
  18. Xu T., Miszuk J.M., Zhao Y., Sun H., Fong H. Electrospun polycaprolactone 3D nanofibrousscaffoldwith interconnected and hierarchically structured pores for bone tissue engineering. Adv Healthc Mater 2015; 4(15): 2238–2246, http://dx.doi.org/10.1002/adhm.201570089.
  19. Felsenfeld D.P., Choquet D., Sheetz P. Ligand binding regulates the directed movement of β1 integrins on fibroblasts. Nature 1996; 383(6599): 438–440, http://dx.doi.org/10.1038/383438a0.
  20. Perez R.A., Mestres G. Role of poresizeand morphology in musculo-skeletal tissue regeneration. Mater Sci Eng C Mater Biol Appl 2016; 61: 922–939, http://dx.doi.org/10.1016/j.msec.2015.12.087.
  21. Abercombie M. Contact inhibition in tissue culture. In Vitro 1970; 6(2): 128–142, http://dx.doi.org/10.1007/bf02616114.
  22. Moisenovich M.M., Kulikov D.A., Arkhipova A.Yu., Malyuchenko N.V., Kotlyarova M.S., Goncharenko A.V., Kulikov A.V., Mashkov A.E., Agapov I.I., Paleev F.N., Svistunov A.A., Kirpichnikov M.P. Fundamental bases for the use of silk fibroin-based bioresorbable microvehicles as an example of skin regeneration in therapeutic practice. Terapevticeskij arhiv 2015; 87(12): 66–72.
  23. Vatankhah E., Prabhakaran M.P., Semnani D., Razavi S., Morshed M., Ramakrishna S. Electrospun tecophilic/gelatin nanofibers with potential for small diameter. Biopolymers 2014; 101(12): 1165–1180, http://dx.doi.org/10.1002/bip.22524.
  24. Hiraoka Y., Kimura Y., Ueda H., Tabata Y. Fabrication and biocompatibility of collagen sponge reinforced with poly(glycolic acid) fiber. Tissue Eng 2003; 9(6): 1101–1112, http://dx.doi.org/10.1089/10763270360728017.
  25. Li D., Ye Y., Li D., Li X., Mu C. Biological properties of dialdehyde carboxymethyl cellulose crosslinked gelatin–PEG composite hydrogel fibers for wound dressings. Carbohydr Polym 2016; 137: 508–514, http://dx.doi.org/10.1016/j.carbpol.2015.11.024.
  26. Panas-Perez E., Gatt C.J., Dunn M.G. Development of a silk and collagen fiber scaffold for anterior cruciate ligament reconstruction. J Mater Sci Mater Med 2014; 24(1): 257–265, http://dx.doi.org/10.1007/s10856-012-4781-5.
  27. Guan L., Tian P., Ge H., Tang X., Zhang H., Du L., Liu P. Chitosan-functionalized silk fibroin 3D scaffold for keratocyte culture. J Mol His 2013; 44(5): 609–618, http://dx.doi.org/10.1007/s10735-013-9508-5.
  28. Poursamar S.A., Hatami J., Lehner A.N., da Silva C.L., Ferreira F.C., Antunes A.P. Gelatin porous scaffolds fabricated using a modified gas foaming technique: characterisation and cytotoxicity assessment. Mater Sci Eng C Mater Biol Appl 2015; 48: 63–70, http://dx.doi.org/10.1016/j.msec.2014.10.074.
  29. Moisenovich M.M., Pustovalova O.L., Arhipova A.Y., Vasiljeva T.V., Sokolova O.S., Bogush V.G., Debabov V.G., Sevastianov V.I., Kirpichnikov M.P., Agapov I.I. In vitro and in vivo biocompatibility studies of a recombinant analogue of spidroin 1 scaffolds. J Biomed Mater Res A 2011; 96(1): 125–131, http://dx.doi.org/10.1002/jbm.a.32968.
  30. Moisenovich M.M., Malyuchenko N.V., Arkhipova A.Y., Goncharenko A.V., Kotlyarova M.S., Davydova L.I., Vasil’evaa T.V., Bogush V.G., Agapov I.I., Debabov V.G., Kirpichnikov M.P. Novel 3D-microcarriers from recombinant spidroin for regenerative medicine. Dokl Biochem Biophys 2016; 463(1): 232–235, http://dx.doi.org/10.1134/s1607672915040109.
Sokolova A.I., Bobrova M.M., Safonova L.A., Agapova O.I., Moisenovich M.M., Agapov I.I. The Relation of Biological Properties of the Silk Fibroin/Gelatin Scaffolds with the Composition and Fabrication Technology. Sovremennye tehnologii v medicine 2016; 8(3): 6, https://doi.org/10.17691/stm2016.8.3.01


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank