Organized Frequency Structure of Electrocardiogram During Long-Duration Ventricular Fibrillation Under Experimental Conditions
The aim of the investigation is to study the frequency structure of electrocardiogram (ECG) during long-duration ventricular fibrillation (VF) in the canine heart using fast Fourier transform in the frequency range of 1–40 Hz.
Materials and Methods. ECG has been recorded in 10 dogs before VF and during VF. No pathological changes were revealed on ECGs before VF. The VF was induced by a brief (2 s) application of alternating current (30 V; 50 Hz) to the heart region. Spectral analysis of ECG in VF was carried out using fast Fourier transform in five frequency bands: very low frequencies (1–3 Hz), low (4–7 Hz), middle (8–12 Hz), high (13–17 Hz), and very high frequencies (18–40 Hz). Spectral power (amplitude) and specific gravity of oscillations were determined in all five frequency bands.
Results. ECG in VF is characterized by dominant frequency structure. At minute 1 of VF the most significant changes have been observed in the frequency structure with transition from domination of high frequency oscillations (13–17 Hz) to domination of middle frequency oscillations (8–12 Hz) and after that to domination of low frequency oscillations (4–7 Hz). At minutes 2–10 of VF domination of low frequency oscillations is replaced by domination of low and middle frequency ones. Total spectral power of oscillations in the range of 1–40 Hz shows insignificant changes at minute 1 of VF and significantly decreases at minutes 2–10 of VF.
Conclusion. Dominant frequency structure points to indicates electrical activity in VF. The results of the paper can be used in algorithms for automatic detection of VF with dominant frequency structure. Organized activity in VF provides a good theoretical framework to search for a new method of sequential rhythmic defibrillation using a series of relatively weak but rhythmic organized stimuli.
- Gurvich N.L. Osnovnye printsipy defibrillyatsii serdtsa [The main principles of cardiac defibrillation]. Moscow: Meditsina; 1975.
- Bockeria L.A., Bockeria O.L., Kislitsina O.N. Randomized clinical trials for prevention of sudden cardiac death: principles and total score. Annaly aritmologii 2010; 7(2): 5–14.
- Hayashi M., Shimizu W., Albert C.M. The spectrum of epidemiology underlying sudden cardiac death. Circ Res 2015; 116(12): 1887–1906, http://dx.doi.org/10.1161/CIRCRESAHA.116.304521.
- Bockeria O.L., Akhobekov A.A. Sudden cardiac death: mechanisms and risk stratification. Annaly aritmologii 2012; 9(3): 5–13.
- Abhilash S.P., Narayanan N. Sudden cardiac death — historical perspectives. Indian Heart J 2014; 66(Suppl 1): S4–S9, http://dx.doi.org/10.1016/j.ihj.2014.01.002.
- Mathematical approaches to cardiac arrhythmias. Ann N Y Acad Sci 1990; 591: 1–416.
- Fenton F., Karma A. Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: filament instability and fibrillation. Chaos 1998; 8(1): 20–47, http://dx.doi.org/10.1063/1.166311.
- Qu Z. Chaos in the genesis and maintenance of cardiac arrhythmias. Prog Biophys Mol Biol 2011; 105(3): 247–257, http://dx.doi.org/10.1016/j.pbiomolbio.2010.11.001.
- Karma A. Physics of cardiac arrhythmogenesis. Annu Rev Condens Mat Phys 2013; 4(1): 313–337, http://dx.doi.org/10.1146/annurev-conmatphys-020911-125112.
- Qu Z., Hu G., Garfinkel A., Weiss J.N. Nonlinear and stochastic dynamics in the heart. Phys Rep 2014; 543(2): 61–162, http://dx.doi.org/10.1016/j.physrep.2014.05.002.
- Qu Z., Weiss J.N. Mechanisms of ventricular arrhythmias: from molecular fluctuations to electrical turbulence. Annu Rev Physiol 2015; 77: 29–55, http://dx.doi.org/10.1146/annurev-physiol-021014-071622.
- Huang J., Rogers J.M., Killingsworth C.R., Singh K.P., Smith W.M., Ideker R.E. Evolution of activation patterns during long duration ventricular fibrillation in dogs. Am J Physiol Heart Circ Physiol 2004; 286(3): H1193–H1200, http://dx.doi.org/10.1152/ajpheart.00773.2003.
- Huizar J.F., Warren M.D., Shvedko A.G., Kalifa J., Moreno J., Mironov S., Jalife J., Zaitsev A.V. Three distinct phases of VF during global ischemia in the isolated blood-perfused pig heart. Am J Physiol Heart Circ Physiol 2007; 293(3): H1617–H1628, http://dx.doi.org/10.1152/ajpheart.00130.2007.
- Cheng K.A., Dosdall D.J., Li L., Rogers J.M., Ideker R.E., Huang J. Evolution of activation patterns during long-duration ventricular fibrillation in pigs. Am J Physiol Heart Circ Physiol 2012; 302(4): H992–H1002, http://dx.doi.org/10.1152/ajpheart.00419.2011.
- Barr R.C. The electrocardiogram and its relationship to excitation of the heart. In: Physiology and pathophysiology of the heart. Developments in cardiovascular medicine. Springer Science + Business Media; 1989; p. 175–93, http://dx.doi.org/10.1007/978-1-4613-0873-7_8.
- Babsky E.B., Balanter B.I., Kireeva T.B., Macarychev V.A., Mezentseva L.V. Application of spectral-correlation analysis to the study of ventricular fibrillation. Kibernetika (Moscow) 1972; 9–10(56): 44–51.
- Tabak V.Y., Chernysh A.M., Nemirko A.P., Manilo L.A. The dynamics of spectral characteristics of ECG in cardiac fibrillation of the ventricles. Anesteziologiya i reanimatologiya 1980; 1: 71–74.
- Newton J.C., Smith W.M., Ideker R.E. Estimated global transmural distribution of activation rate and conduction block during porcine and canine ventricular fibrillation. Circ Res 2004; 94(6): 836–842, http://dx.doi.org/10.1161/01.res.0000120860.01645.17.
- Pandit S.V., Jalife J. Rotors and the dynamics of cardiac fibrillation. Circ Res 2013; 112(5): 849–862, http://dx.doi.org/10.1161/CIRCRESAHA.111.300158.
- Mikhaylov S.S. Klinicheskaya anatomiya serdtsa [Clinical anatomy of the heart]. Moscow: Meditsina; 1987.
- Koller M.L., Riccio M.L., Gilmour R.F. Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation. Am J Physiol 1998; 275(5 Pt 2): H1635–H1642.
- Stanley W.C., Recchia F.A., Lopaschuk G.D. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005; 85(3): 1093–1129, http://dx.doi.org/10.1152/physrev.00006.2004.
- Gebhard M.-M., Bretschneider H.J., Schnabel P.A. Cardioplegia principles and problems. In: Physiology and pathophysiology of the heart. Developments in Cardiovascular Medicine. Springer Science + Business Media 1989; p. 655–668, http://dx.doi.org/10.1007/978-1-4613-0873-7_32.
- Huang J., Dosdall D.J., Cheng K.-A., Li L., Rogers J.M., Ideker R.E. The importance of Purkinje activation in long duration ventricular fibrillation. J Am Heart Assoc 2014; 3(1): e000495, http://dx.doi.org/10.1161/JAHA.113.000495.
- Akiyama T. Intracellular recording of in situ ventricular cells during ventricular fibrillation. Am J Physiol 1981; 240(4): H465–H471, http://dx.doi.org/10.1016/0002-9149(80)90815-2.
- Opie L.H. Substrate and energy metabolism of the heart. In: Physiology and pathophysiology of the heart. Developments in cardiovascular medicine. Springer Science + Business Media; 1989; p. 327–359, http://dx.doi.org/10.1007/978-1-4613-0873-7_16.
- Caldwell J.C., Burton F.L., Cobbe S.M., Smith G.L. Amplitude changes during ventricular fibrillation: a mechanistic insight. Front Physiol 2012; 3: 147, http://dx.doi.org/10.3389/fphys.2012.00147.
- Lazzara R., Scherlag B.J. Cellular electrophysiology and ischemia. In: Physiology and pathophysiology of the heart. Developments in cardiovascular medicine. Springer Science + Business Media; 1989; p. 493–508, http://dx.doi.org/10.1007/978-1-4613-0873-7_23.
- Kléber A.G., Rudy Y. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol Rev 2004; 84(2): 431–488, http://dx.doi.org/10.1152/physrev.00025.2003.
- Venable P.W., Taylor T.G., Shibayama J., Warren M., Zaitsev A.V. Complex structure of electrophysiological gradients emerging during long-duration ventricular fibrillation in the canine heart. Am J Physiol Heart Circ Physiol 2010; 299(5): H1405–H1418, http://dx.doi.org/10.1152/ajpheart.00419.2010.
- Taylor T.G., Venable P.W., Shibayama J., Warren M., Zaitsev A.V. Role of KATP channel in electrical depression and asystole during long-duration ventricular fibrillation in ex vivo canine heart. Am J Physiol Heart Circ Physiol 2012; 302(11): H2396–H2409, http://dx.doi.org/10.1152/ajpheart.00752.2011.
- Janssen P.M., Periasamy M. Determinants of frequency dependent contraction and relaxation of mammalian myocardium. J Mol Cell Cardiol 2007; 43(5): 523–531, http://dx.doi.org/10.1016/j.yjmcc.2007.08.012.
- Milani-Nejad N., Janssen P.M. Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacol Therapeutics 2014; 141(3): 235–249, http://dx.doi.org/10.1016/j.pharmthera.2013.10.007.
- IvanovG.G., VostricowV.А. Ventricular fibrillation and ventricular tachycardia — base position and diagnostic criteria. Vestnik Rossiyskogo universiteta druzhby narodov. Seriya Meditsina 2009; 1: 75–80.
- Vostrikov V.A., Bogushevich M.S. Electrical injury: pathogenesis, clinical features, and treatment of electrical injury. Trudy filiala NII obshchey reanimatologii RAMN v Novokuznetske 2001; 2: 3–16.
- Myerburg R.J., Junttila M.J. Sudden cardiac death caused by coronary heart disease. Circulation 2012; 125(8): 1043–1052, http://dx.doi.org/10.1161/CIRCULATIONAHA.111.023846.
- Nash M.P., Mourad A., Clayton R.H., Sutton P.M., Bradley C.P., Hayward M., Paterson D.J., Taggart P. Evidence for multiple mechanisms in human ventricular fibrillation. Circulation 2006; 114(6): 536–542, http://dx.doi.org/10.1161/CIRCULATIONAHA.105.602870.
- Sánchez-Muñoz J.J., Rojo-Alvarez J.L., García-Alberola A., Everss E., Alonso-Atienza F., Ortiz M., Martínez-Sánchez J., Ramos-López J., Valdés-Chavarri M. Spectral analysis of intracardiac electrograms during induced and spontaneous ventricular fibrillation in humans. Europace 2009; 11(3): 328–331, http://dx.doi.org/10.1093/europace/eun366.
- Panfilov I., Lever N.A., Smaill B.H., Larsen P.D. Ventricular fibrillation frequency from implanted cardioverter defibrillator devices. Europace 2009; 11(8): 1052–1056, http://dx.doi.org/10.1093/europace/eup159.
- Bradley C.P., Clayton R.H., Nash M.P., Mourad A., Hayward M., Paterson D.J., Taggart P. Human ventricular fibrillation during global ischemia and reperfusion. Paradoxical changes in activation rate and wavefront complexity. Circ Arrhythm Electrophysiol 2011; 4(5): 684–691, http://dx.doi.org/10.1161/CIRCEP.110.961284.
- Clinical cardiac pacing and defibrillation. Ellenbogen A., Kay G.N., Wilkoff B.L. (editors). WB Saunders Company; 2000.
- Sowell B., Fast V.G. Ionic mechanism of shock-induced arrhythmias: role of intracellular calcium. Heart Rhythm 2012; 9(1): 96–104, http://dx.doi.org/10.1016/j.hrthm.2011.08.024.
- Chen P.S., Wolf P.D., Melnick S.D., Danieley N.D., Smith W.M., Ideker R.E. Comparison of activation during ventricular fibrillation and following unsuccessful defibrillation shocks in open-chest dogs. Circ Res 1990; 66(6): 1544–1560, http://dx.doi.org/10.1161/01.RES.66.6.1544.
- Zhou X., Daubert J.P., Wolf P.D., Smith W.M., Ideker R.E. Epicardial mapping of ventricular defibrillation with monophasic and biphasic shocks in dogs. Circ Res 1993; 72(1): 145–160, http://dx.doi.org/10.1161/01.RES.72.1.145.
- Nanthakumar K., Johnson P.L., Huang J., Killingsworth C.L., Rollins D.L., Mselderry H.T., Smith W.M., Ideker R.E. Regional variation in capture of fibrillating swine left ventricle during electrical stimulation. J Cardiovasc Electrophysiol 2005; 16(4): 425–432, http://dx.doi.org/10.1046/j.1540-8167.2005.40517.x.
- Pak H.-N., Liu Y.-B., Hayashi H., Okuyama Y., Chen P.-S., Lin S.-F. Synchronization of ventricular fibrillation with real-time feedback pacing: implication to low-energy defibrillation. Am J Physiol 2003; 285(6): H2704–H2711, http://dx.doi.org/10.1152/ajpheart.00366.2003.
- Johnson P.L., Newton J.C., Rollins D.L., Smith W.M., Ideker R.E. Adaptive pacing during ventricular fibrillation. Pacing Clin Electrophysiol 2003; 26(9): 1824–1836, http://dx.doi.org/10.1046/j.1460-9592.2003.t01-1-00276.x.
- Alferness C., Bayly P.V., Krassowska W., Daubert J.P., Smith W.M., Ideker R.E. Strength-interval curves in canine myocardium at very short cycle length. Pacing Clin Electrophysiol 1994; 17(5 Pt 1): 876–881, http://dx.doi.org/10.1111/j.1540-8159.1994.tb01428.x.
- Frommer P.L. Studies on coupled pacing technique and some comments on paired electrical stimulation. Bull N Y Acad Med 1965; 41: 670–680.
- Uchtomsky A.A. Problema fiziologicheskoy labil’nosti (1939). V kn.: Sobranie sochineniy: V 6 t. T. 2 [The problem of physiological lability (1939). In: Collected works: In 6 vol. Vol. 2.] Leningrad: Izd-vo Leningradskogo gos. un-ta; 1952; p. 167–171.
- Uchtomsky A.A. Ansambl’ vozbuzhdeniya i elektroton (1941). Sobranie sochineniy: V 6 t. T. 6 [The ensemble of excitation and electrotonus. In: Collected works: In 6 vol. Vol. 6]. Leningrad: Izd-vo Leningradskogo gos. un-ta; p. 152–167.
- Penfield W., Jasper H. Epilepsy and the functional anatomy of the human brain. London: I.A. Chuchill; 1954.