Atrial and Brain Natriuretic Peptides of Secretory Cardiomyocytes in Salt Loading in Experiment
The aim of the investigation is to assess the influence of salt load on atrial (ANP) and brain (BNP) natriuretic peptide production in granules of secretory cardiomyocytes in rats.
Materials and Methods. The experiments were carried out on 14 white out-bred male Wistar rats weighing 280–300 g. During the experiment all the animals were treated with standard-feed diet and had unlimited access to food and water. NaCl solution was introduced per os in the dose of 1 g per 1 kg of body mass during 14 days. Arterial pressure (AP) was measured noninvasively using a tail-cuff method. ANP and BNP production of atrial cardiomyocytes was studied by means of immunohistochemistry, transmission electron microscopy, immunocytochemistry. There was performed a morphometric analysis of granules containing peptides (A-type — “mature, storing” and B-type — “dissolving”).
Results. Increase in the number of granules with ANP and decrease in those with BNP accompanied by elevated AP was revealed 14 days after NaCl intake as compared to intact animals.
Conclusion. Natriuretic peptides metabolism is regulated by various mechanisms. Early BNP release does not promote AP reduction due to compensatory mechanism disturbance in salt-induced arterial hypertension. Increase in ANP production occurs under the influence of renin-angiotensin-aldosterone system and elevated AP. The present data can indicate adaptive reaction in response to salt loading.
- Ogawa T., de Bold A. The heart as an endocrine organ. Endocr Connect 2014; 3(2): R31–R44, http://dx.doi.org/10.1530/EC-14-0012.
- Ichiki T., Huntley B.K., Sangaralingham S.J., Burnett J.C. Jr. Pro-atrial natriuretic peptide: a novel guanylyl cyclase-A receptor activator that goes beyond atrial and B-type natriuretic peptides. JACC Heart Fail 2015; 3(9): 715–723, http://dx.doi.org/10.1016/j.jchf.2015.03.015.
- de Bold A.J. Thirty years of research on atrial natriuretic factor: historical background and emerging concepts. Can J Physiol Pharmacol 2011; 89(8): 527–531, http://dx.doi.org/10.1139/y11-019.
- Kuhn M. Cardiac actions of atrial natriuretic peptide: new visions of an old friend. Circ Res 2015; 116(8): 1278–1280, http://dx.doi.org/10.1161/CIRCRESAHA.115.306325.
- Nishikimi T., Kuwahara K., Nakao K. Current biochemistry, molecular biology, and clinical relevance of natriuretic peptides. J Cardiol 2011; 57(2): 131–140, http://dx.doi.org/10.1016/j.jjcc.2011.01.002.
- Zhou Y., Wu Q. Corin in natriuretic peptide processing and hypertension. Curr Hypertens Rep 2014; 16(2): 415, http://dx.doi.org/10.1007/s11906-013-0415-7.
- Arora P., Reingold J., Baggish A., Guanaga D.P., Wu C., Ghorbani A., Song Y., Chen-Tournaux A., Khan A.M., Tainsh L.T., Buys E.S., Williams J.S., Heublein D.M., Burnett J.C., Semigran M.J., Bloch K.D., Scherrer-Crosbie M., Newton-Cheh C., Kaplan L.M., Wang T.J. Weight loss, saline loading, and the natriuretic peptide system. J Am Heart Assoc 2015; 4(1): e001265, http://dx.doi.org/10.1161/JAHA.114.001265.
- Ogawa N., Komura H., Kuwasako K., Kitamura K., Kato J. Plasma levels of natriuretic peptides and development of chronic kidney disease. BMC Nephrol 2015; 16: 171, http://dx.doi.org/10.1186/s12882-015-0163-9.
- Galkina М.V., Baskina О.S., Bugrova М.L. The study of synthesis, accumulation and release processes of atrial and brain natriuretic peptides in experimental renovascular hypertension. Sovremennye tehnologii v medicine 2015; 7(2): 33–40, http://dx.doi.org/10.17691/stm2015.7.2.04.
- Bugrova M.L. The study of atrial natriuretic peptide in different types of arterial hypertension in experiment. Morfologicheskie vedomosti 2015; 2: 28–34.
- Arutiunov G.P., Sokolova A.V., Oganesova L.G. Experimental models of renal tubulointersitial damade in arterial hypertension. Klinicheskaya nefrologiya 2011; 2: 75–78.
- Laffer C.L., Laniado-Schwartzman M., Wang M.H., Nasjletti A., Elijovich F. 20-HETE and furosemide-induced natriuresis in salt-sensitive essential hypertension. Hypertension 2003; 41(3 Pt 2): 703–708, http://dx.doi.org/10.1161/01.HYP.0000051888.91497.47.
- Ventura N.M., Peterson N.T., Tse M.Y., Andrew R.D., Pang S.C., Jin A.Y. Molecular adaptations in vasoactive systems during acute stroke in salt-induced hypertension. Mol Cell Biochem 2015; 399(1–2): 39–47, http://dx.doi.org/10.1007/s11010-014-2230-0.
- Aaron K.J., Sanders P.W. Role of dietary salt and potassium intake in cardiovascular health and disease: a review of the evidence. Mayo Clin Proc 2013; 88(9): 987–995, http://dx.doi.org/10.1016/j.mayocp.2013.06.005.
- Richardson S.I., Freedman B.I., Ellison D.H., Rodriguez C.J. Salt sensitivity: are view with a focus on non-Hispanic blacks and Hispanics. J Am Soc Hypertens 2013; 7(2): 170–179, http://dx.doi.org/10.1016/j.jash.2013.01.003.
- Weinberger M.H. Salt sensitivity is associated with an increased mortality in both normal and hypertensive humans. J Clin Hypertens (Greenwich) 2002; 4(4): 274–276, http://dx.doi.org/10.1111/j.1524-6175.2002.00924.x.
- Smirnova M.I., Oganov R.G., Gorbunov V.M., Deev A.D., Andreeva G.F. Masked inefficacy of arterial hypertension treatment: prevalence and predictors. Kardiovaskulyarnaya terapiya i profilaktika 2011; 10(6): 11–17.
- Maksimov V.F., Korostyshevskaya I.M., Kurganov S.A., Markel’ A.L., Rudenko N.S., Iakobson G.S. Changes of right atrial myoendocrine cells during hypertension and after arterial pressure decrease. Tsitologiia 2014; 56(10): 725–734.
- Torres-Courchoud I., Chen H.H. B-type natriuretic peptide and acute heart failure: fluid homeostasis, biomarker and therapeutics. Rev Clin Esp 2016; pii: S0014–2565(16)00025-4, http://dx.doi.org/10.1016/j.rce.2016.01.009.
- Tripathi R., Wang D., Sullivan R., Fan T.H., Gladysheva I.P., Reed G.L. Depressed corin levels indicate early systolic dysfunction before increases of atrial natriuretic peptide/B-type natriuretic peptide and heart failure development. Hypertension 2016; 67(2): 362–367, http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06300.
- Hu W., Zhou P.H., Zhang X.B., Xu C.G., Wang W. Plasma concentrations of adrenomedullin and natriuretic peptides in patients with essential hypertension. Exp Ther Med 2015; 9(5): 1901–1908, http://dx.doi.org/10.3892/etm.2015.2345.
- Macheret F., Heublein D., Costello-Boerrigter L.C., Boerrigter G., McKie P., Bellavia D., Mangiafico S., Ikeda Y., Bailey K., Scott C.G., Sandberg S., Chen H.H., Malatino L., Redfield M.M., Rodeheffer R., Burnett J. Jr., Cataliotti A. Human hypertension is characterized by a lack of activation of the antihypertensive cardiac hormones ANP and BNP. J Am Coll Cardiol 2012; 60(16): 1558–1565, http://dx.doi.org/10.1016/j.jacc.2012.05.049.
- Mifune Н., Nishi Y., Tajiri Y., Yabuki A. Different A-type natriuretic peptide level in five strains of mice. J Vet Med Sci 2012; 74(4): 499–502, http://doi.org/10.1292/jvms.11-0451.
- Abrosimov D.A., Yakovleva E.I., Bugrova M.L. Quantitative assay of brain natriuretic peptide in rat cardiomyocytes in the early postreperfusion period. Cell and Tissue Biology 2015; 9(4): 336–339, http://dx.doi.org/10.1134/s1990519x15040021.
- Sato M., Mikamo A., Kurazumi H., Suzuki R., Murakami M., Kobayashi T., Yoshimura K., Hamano K. Ratio of preoperative atrial natriuretic peptide to brain natriuretic peptide predicts the outcome of the maze procedure in mitral valve disease. J Cardiothorac Surg 2013; 8: 32, http://dx.doi.org/10.1186/1749-8090-8-32.
- Petrov S.V., Raykhlin N.T. Rukovodstvo po immunogistokhimicheskoy diagnostike opukholey cheloveka [Guide to immunohistochemical diagnosis of human tumors]. Kazan; 2000; 287 p.
- Biserova N.M. Metody vizualizatsii biologicheskikh ul’trastruktur. Podgotovka biologicheskikh ob”ektov dlya izucheniya s pomoshch’yu elektronnykh i fluorestsentnykh konfokal’nykh lazernykh mikroskopov [Imaging methods of biological ultrastructures. Preparation of biological objects for the study using electron and fluorescent confocal laser microscopes]. Moscow: Tovarishchestvo nauchnykh izdaniy KMK; 2013; 104 p.
- Rakhcheeva M.V., Bugrova M.L. Changes in the proportion of A- and B-types of granules containing atrial and brain natriuretic peptides in atrial myocytes in vasorenal hypertension in rats. Tsitologiia 2010; 52(8): 629–633.
- Babkin A.P., Gladkikh V.V., Kurbatova T.L. Salt sensitivity of arterial hypertension as a predictor of antihypertensive therapy efficacy. Mezhdunarodnyy meditsinskiy zhurnal 2010; 16(3): 49–52.
- Felder R.A., White M.J., Williams S.M., Jose P.A. Diagnostic tools for hypertension and salt sensitivity testing. Curr Opin Nephrol Hypertens 2013; 22(1): 65–76, http://dx.doi.org/10.1097/MNH.0b013e32835b3693.
- Volkov V.S., Poselyugina O.B., Nilova S.A., Rokkina C.A. Blood pressure level and salt intake in hypertensive patients. Arterial’naya gipertenziya 2011; 17(1): 69–73.
- Osipova I.V., Miroshnichenko A.I., Pyrikova N.V., Antropova O.N., Kulikov V.P., Aleksentseva A.V. Long-term variability of blood pressure and risk factors in men with stress-induced hypertension. Arterial’naya gipertenziya 2014; 20(2): 92–100.
- Armstrong D.W., Tse M.Y., O’Tierney-Ginn P.F., Wong P.G., Ventura N.M., Janzen-Pang J.J., Matangi M.F., Johri A.M., Croy B.A., Adams M.A., Pang S.C. Gestational hypertension in atrial natriuretic peptide knockout mice and the developmental origins of salt-sensitivity and cardiac hypertrophy. Regul Pept 2013; 186: 108–115, http://dx.doi.org/10.1016/j.regpep.2013.08.006.
- Bugrova M.L. Atrial and brain natriuretic peptides of cardiac muscle cells in postreperfusion period in rats. Tsitologiia 2016; 58(2): 129–134.
- Armaly Z., Assady S., Abassi Z. Corin: a new player in the regulation of salt-water balance and blood pressure. Curr Opin Nephrol Hypertens 2013; 22(6): 713–722, http://dx.doi.org/10.1097/01.mnh.0000435609.35789.32.
- Cavallero S., González G.E., Seropian I.M., Cerrudo C.S., Matorra F., Morales C., Hertig C.M., Puyó A.M., Fernández B.E., Gelpi R.J. Ventricular function and natriuretic peptides in sequentially combined models of hypertension. Am J Physiol Heart Circ Physiol 2010; 298(4): H1290–H1299, http://dx.doi.org/10.1152/ajpheart.00911.2009.
- Selivanova G.V., Vlasova T.D., Khirmanov V.N., Krutikov A.N. Changes in the cytochemical and morphometric characteristics of the myocytes in the right heart of the rat in adrenal-regeneration hypertension. Tsitologiia 1995; 37(5–6): 415–423.
- Costa M.V., Fernandes-Santos C., Faria T. da S., Aguila M.B., Mandarim-de-Lacerda C.A. Diets rich in saturated fat and/or salt differentially modulate atrial natriuretic peptide and renin expression in C57BL/6 mice. Eur J Nutr 2012; 51(1): 89–96, http://dx.doi.org/10.1007/s00394-011-0196-1.
- Kobori H., Nishiyama A., Abe Y., Navar L.G. Enhancement of intra renal angiotensinogen in Dahl salt-sensitive rats on high salt diet. Hypertension 2003; 41(3): 592–559, http://dx.doi.org/10.1161/01.HYP.0000056768.03657.B4.
- Bayorh M.A., Ganafa A.A., Emmett N., Socci R.R., Eatman D., Fridie I.L. Alterations in aldosterone and angiotensin II levels in salt-induced hypertension. Clin Exp Hypertens 2005; 27(4): 355–367, http://dx.doi.org/10.1081/ceh-57423.
- Le Corvoisier P., Adamy C., Sambin L., Crozatier B., Berdeaux A., Michel J.B., Hittinger L., Su J. The cardiac renin-angiotensin system is responsible for high-salt diet-induced left ventricular hypertrophy in mice. Eur J Heart Fail 2010; 12(11): 1171–1178, http://dx.doi.org/10.1093/eurjhf/hfq146.
- Tamura K., Chiba E., Yokoyama N., Sumida Y., Yabana M., Tamura N., Takasaki I., Ishii M., Horiuchi M., Umemura S. Renin-angiotensin system and fibronectin gene expression in Dahl Iwai salt-sensitive and salt-resistant rats. J Hypertens 1999; 17(1): 81–89, http://dx.doi.org/10.1097/00004872-199917010-00013.
- Temsah R., Nemer M. GATA factors and transcriptional regulation of cardiac natriuretic peptide genes. Regul Pept 2005; 128(3): 177–178, http://dx.doi.org/10.1016/j.regpep.2004.12.026.
- Vuolteenaho O., Ala-Kopsala M., Ruskoaho H. BNP as a biomarker in heart disease. Adv Clin Chem 2005; 40: 1–36, http://dx.doi.org/10.1016/s0065-2423(05)40001-3.
- Bramham K., Seed P.T., Lightstone L., Nelson-Piercy C., Gill C., Webster P., Poston L., Chappell L.C. Diagnostic and predictive biomarkers for pre-eclampsia in patients with established hypertension and chronic kidney disease. Kidney Int 2016; 89(4): 874–885, http://dx.doi.org/10.1016/j.kint.2015.10.012.
- Goetze J.P. Biosynthesis of cardiac natriuretic peptides. Results Probl Cell Differ 2010; 50: 97–120, http://dx.doi.org/10.1007/400_2009_25.
- Yuan K., Kim S.Y., Oh Y.B., Yu J., Shah A., Park B.H., Kim S.H. Upregulation of ANP and NPR-C mRNA in the kidney and heart of eNOS knockout mice. Peptides 2010; 31(7): 1319–1325, http://dx.doi.org/10.1016/j.peptides.2010.04.008.
- Akhmedkhanova A.A. Features of kidney response on water and salt load in spinal animals. Nefrologiya i dializ 2003; 5(3): 249.
- Sun Y., Deng T., Lu N., Yan M., Zheng X. B-type natriuretic peptide protects cardiomyocytes at reperfusion via mitochondrial calcium uniporter. Biomed Pharmacother 2010; 64(3): 170–176, http://dx.doi.org/10.1016/j.biopha.2009.09.024.
- Pan X., Liu J., Nguyen T., Liu C., Sun J., Teng Y., Fergusson M.M., Rovira I.I., Allen M., Springer D.A., Aponte A.M., Gucek M., Balaban R.S., Murphy E., Finkel T. The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol 2013; 15(12): 1464–1472, http://dx.doi.org/10.1038/ncb2868.
- Arjamaa O., Nikinmaa М. Hypoxia regulates the natriuretic peptide system. Int J Physiol Pathophysiol Pharmacol 2011; 3(3): 191–201.
- Casserly B., Pietras L., Schuyler J., Wang R., Hill N., Klinger J. Cardiac atria are the primary source of ANP release in hypoxia-adapted rats. Life Sci 2010; 87(11–12): 382–389, http://dx.doi.org/10.1016/j.lfs.2010.07.013.
- Fujii Y., Ishino K., Tomii T., Kanamitsu H., Fujita Y., Mitsui H., Sano S. Atrionatriuretic peptide improves left ventricular function after myocardial global ischemia–reperfusion in hypoxic hearts. Artif Organs 2012; 36(4): 379–386, http://dx.doi.org/10.1111/j.1525-1594.2011.01358.x.