Today: Nov 23, 2024
RU / EN
Last update: Oct 30, 2024
Migration of Human Dendritic Cells in vitro Induced  by Vaccines Stimulating Humoral and Cell Immunity

Migration of Human Dendritic Cells in vitro Induced by Vaccines Stimulating Humoral and Cell Immunity

Talayev V.Y., Talaeva М.V., Voronina Е.V., Babaykina О.N.
Key words: dendritic cells; chemokine receptors; migration of dendritic cells; vaccines.
2016, volume 8, issue 3, page 91.

Full text

html pdf
2221
2420

Dendritic cells (DC) are specialized antigen-presenting cells. One of their function is to deliver antigens from peripheral tissues to lymphoid organs by migration controlled by chemokines.

The aim of the investigation was to study the effect of vaccines stimulating cellular or humoral response on the expression of chemokine receptors CCR7, CXCR4 and CXCR5 on DC, and assess the motility of the cells and migration response on chemokines.

Materials and Methods. Immature DC derived from monocytes in vitro were incubated with vaccines or inflammatory mediators, and then assessed their maturation and studied CCR7 gene expression, the presence of CCR7, CXCR4 and CXCR5 receptors on the outer membrane, spontaneous cell motility and chemotaxis induced by chemokines CCL21 and CXCL13.

Results. BCG tuberculosis vaccine stimulating cellular immune response effectively induces DC maturation, and has no effect on the expression of receptors CXCR4 and CXCR5 causing slight but reliable enhanced expression of gene and receptor CCR7 as well as chemotaxis induced by chemokine CCL21. Recombinant yeast hepatitis B vaccine inducing humoral immune response causes partial DC maturation increasing significantly the expression of receptors CCR7, CXCR4 and CXCR5, but does not increase spontaneous cell motility and enhances weakly chemotaxis in response to CCL21 and CXCL13.

Conclusion. Tuberculosis vaccine and hepatitis B vaccine induce different sets of chemokine receptors on DC, however, they stimulate DC hemotaxis relatively weakly. The findings suggest feasibility of searching new adjuvants, which enable to enhance the migration of DC carrying antigens to lymphoid organs.

  1. Steinman R.M. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 1991; 9: 271–296, http://dx.doi.org/10.1146/annurev.immunol.9.1.271.
  2. Alvarez D., Vollmann E.H., von Andrian U.H. Mechanisms and consequences of dendritic cell migration. Immunity 2008; 29(3): 325–342, http://dx.doi.org/10.1016/j.immuni.2008.08.006.
  3. Talaev V.Yu. The mechanisms controlling migration of myeloid dendritic cells and langerhans cells. Immunologiya 2012; 33(2): 104–112.
  4. Ohl L., Mohaupt M., Czeloth N., Hintzen G., Kiafard Z., Zwirner J., Blankenstein T., Henning G., Förster R. CCR7 govern skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 2004; 21(2): 279–288, http://dx.doi.org/10.1016/j.immuni.2004.06.014.
  5. Johnson L.A., Jackson D.G. Cell traffic and the lymphatic endothelium. Ann N Y Acad Sci 2008; 1131: 119–133, http://dx.doi.org/10.1196/annals.1413.011.
  6. Randolph G.J., Angeli V., Swartz M.A. Dendritic-cell trafficking to lymph node through lymphatic vessels. Nat Rev Immunol 2005; 5(8): 617–628, http://dx.doi.org/10.1038/nri1670.
  7. Martín-Fontecha A., Sebastiani S., Höpken U.E., Uguccioni M., Lipp M., Lanzavecchia A., Sallusto F. Regulation of dendritic cell migration to the draining lymph node. Impact on T lymphocyte traffic and priming. J Exp Med 2003; 198(4): 615–621, http://dx.doi.org/10.1084/jem.20030448.
  8. Kabashima K., Shiraishi N., Sugita K., Mori T., Onoue A., Kobayashi M., Sakabe J., Yoshiki R., Tamamura H., Fujii N., Inaba K., Tokura Y. CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells. Am J Pathol 2007; 171(4): 1249–1257, http://dx.doi.org/10.2353/ajpath.2007.070225.
  9. Saeki H., Wu M.T., Olasz E., Hwang S.T. A migratory population of skin-derived dendritic cells expresses CXCR5, responds to B lymphocyte chemoattractant in vitro, and co-localizes to B cell zones in lymph nodes in vivo. Eur J Immunol 2000; 30(10): 2808–2814, http://dx.doi.org/10.1002/1521-4141(200010)30:102808::aid-immu28083.0.co;2-k.
  10. Toptygina A.P. The lymphoid follicle — the immune response zone. Immunologiya 2012; 33(3): 162–168.
  11. Cyster J.G., Ansel K.M., Reif K., Ekland E.H., Hyman P.L., Tang H.L., Luther S.A., Ngo V.N. Follicular stromal cells and lymphocyte homing to follicles. Immunol Rev 2000; 176(1): 181–193, http://dx.doi.org/10.1034/j.1600-065x.2000.00618.x.
  12. Katakai T., Suto H., Sugai M., Gonda H., Togawa A., Suematsu S., Ebisuno Y., Katagiri K., Kinashi T., Shimizu A. Organizer-like reticular stromal cell layer common to adult secondary lymphoid organs. J Immunol 2008; 181(9): 6189–6200, http://dx.doi.org/10.4049/jimmunol.181.9.6189.
  13. León B., Ballesteros-Tato A., Browning J.L., Dunn R., Randall T.D., Lund F.E. Regulation of TH2 development by CXCR5+ dendritic cells and lymphotoxin-expressing B cells. Nat Immunol 2012; 13(7): 681–690, http://dx.doi.org/10.1038/ni.2309.
  14. Talayev V.Yu., Plehanova M.V., Zaichenko I.Ye., Babaykina O.N. Effect of vaccines on the expression of chemokine receptors on dendritic cells of newborns and adults in vitro. Immunologiya 2013; 34(6): 318–323.
  15. Plehanova M.V., Talayev V.Yu., Babaykina O.N., Zaichenko I.Ye., Ephimov E.I. The action of BCG and hepatitis B vaccines on phenotypic and functional properties of the newborn’s dendritic cells in vitro. Immunologiya 2012; 33(6): 311–318.
  16. Lindquist R.L., Shakhar G., Dudziak D., Wardemann H., Eisenreich T., Dustin M.L., Nussenzweig M.C. Visualizing dendritic cell networks in vivo. Nat Immunol 2004; 5(12): 1243–1250, http://dx.doi.org/10.1038/ni1139.
  17. Wang C., Hillsamer P., Kim C.H. Phenotype, effector function, and tissue localization of PD-1-expressing human follicular helper T cell subsets. BMC Immunology 2011; 12: 53, http://dx.doi.org/10.1186/1471-2172-12-53.
  18. Allen C.D., Ansel K.M., Low C., Lesley R., Tamamura H., Fujii N., Cyster J.G. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat Immunol 2004; 5(9): 943–952, http://dx.doi.org/10.1038/ni1100.
Talayev V.Y., Talaeva М.V., Voronina Е.V., Babaykina О.N. Migration of Human Dendritic Cells in vitro Induced by Vaccines Stimulating Humoral and Cell Immunity. Sovremennye tehnologii v medicine 2016; 8(3): 91, https://doi.org/10.17691/stm2016.8.3.10


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank