Today: Nov 23, 2024
RU / EN
Last update: Oct 30, 2024
The Impact of Broadband Microwaves of Sub- and Millimeter Range on Biochemical Metabolism in Experimental Tissue Ischemia in vivo

The Impact of Broadband Microwaves of Sub- and Millimeter Range on Biochemical Metabolism in Experimental Tissue Ischemia in vivo

Polyakova А.G., Kuzneczova V.L., Presnyakova М.V.
Key words: electromagnetic radiation; nitric oxide; biochemical metabolism; terahertz band; tissue ischemia.
2016, volume 8, issue 3, page 112.

Full text

html pdf
2106
1808

Electromagnetic radiation (EMR) with various frequency spectra are extensively implemented in practical medicine that determines further experimental studies of the impact on the development of biochemical effects and possible side effects on the body.

The aim of the investigation was to assess the effect of a course of non-thermal microwaves with different broadband frequency ranges on the parameters of the metabolic status of animals in experimental ischemia of a skin flap.

Materials and Methods. We studied the change of necrosis area of distal ischemic dorsal skin flap and the main biochemical indicators in Wistar male rats in the postoperative period, their occipital prominence being exposed to the irradiation in the range 53–78 and 110–170 GHz.

Results. The most pronounced vascular effect was recorded when exposed to EMR 110–170 GHz, in this range there are spectra of nitric oxide and oxygen, with the smallest ischemic and necrotic area in a flap compared to the control group of operated animals. The unexposed animals after surgery were found to have high blood glucose and total cholesterol, as well as the elevated concentration of urea in comparison with control animals. The most significant homeostatic effect on biochemical metabolism indices (total bilirubin, urea, total cholesterol and glucose) was recorded under the influence of EMR 53–78 GHz.

Conclusion. The exposure of microwaves of sub- and millimeter range in noise radiation mode plays the role of control signals to develop biological effects in the body. No side effects on the body of experimental animals indicates the safe use of microwave exposure.

  1. Ponomarenko G.N. Innovative restoration technology. Kurortnye vedomosti 2010; 5(62): 15−18.
  2. Istomina I.S. EHF therapy in clinical practice (Part II). Fizioterapiya, bal’neologiya i reabilitatsiya 2012; 6: 38−45.
  3. Savel’ev I.V. Kurs obshchey fiziki. T. 4. Volny. Optika [The course of general physics. Vol. 4. Waves. Optics]. Saint Petersburg: Lan’; 2011; 256 p.
  4. Kulipanov G.N. Generation and application of terahertz radiation: history and perspective. Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriya: Fizika 2010; 5(4): 24–27
  5. Ramundo Orlando A., Gallerano G.P. Terahertz radiation effects and biological applications. J Infrared Milli Terahz Waves 2009; 30(12): 1308–1318, http://dx.doi.org/10.1007/s10762-009-9561-z.
  6. Fedorov V.I. Study of biological effects of electromagnetic radiation of submillimeter part of terahertz range. Biomeditsinskaya radioelektronika 2011; 2: 17–27.
  7. Parshina S.S., Afanas’eva T.N., Tupikin V.D. Biological effects of nitrogen oxide in cardiovascular pathology development as the basis of terahertz therapy application. Byulleten’ meditsinskikh internet-konferentsiy 2012; 2(6): 446–452.
  8. Gapeyev A.B. Study of the mechanisms of biological effects of low-intensity extremely high-frequency electromagnetic radiation: progress, problems and prospects. Biomeditsinskaya radioelektronika 2014; 6: 20–30.
  9. Ivanov A.N. Regulatory effects of wave terahertz frequencies. Byulleten’ meditsinskikh internet-konferentsiy 2012; 2(6): 392–399.
  10. Bogomolova N.V., Dulatov R.M., Kireev S.I., Kirichuk V.F., Krenitskiy A.P. Complex experimental and clinical investigation of the effectiveness of electromagnetic radiation therapy of terahertz range at the frequencies of molecular spectrum of nitric oxide in rehabilitation of patients with bone fractures. Vestnik novykh meditsinskikh tekhnologiy 2010; 17(1): 107–110.
  11. Tsurkan M.V., Sobakinskaya E.A., Smolyanskaya O.A., Bespalov V.G., Vaks V.L., Balbekin N.S. Spectrum research of DNA molecule in the terahertz frequency domain. Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy, mekhaniki i optiki 2012; 1(77): 15–19.
  12. Tsymbal A.A., Kirichuk V.F., Krenitsky A.P., Betsky O.V. Restoration of the main indicators of the metabolic status of terahertz waves at frequencies of nitric oxide 150.176 ... 150.664 GHz in the experiment. Biomeditsinskaya radioelektronika 2011; 1: 30–35.
  13. Kazarinov K.D. The biological effects of the electromagnetic field in the terahertz range. Elektronnaya tekhnika. Seriya 1: SVCh-tekhnika 2009; 503(4): 48–58.
  14. Rybalko S. Y., Yashchenko S. G., Kolbasin P. N. Moring effects of the low-intensity electromagnets radiation and morphological changes of human blood erythrocytes. Tavricheskiy mediko-biologicheskiy vestnik 2013; 16(1–2): 170–173.
  15. Ploskonos M.V. Influence of millimeter electromagnetic radiation of low intensity on apoptosis of male germ cells. Uspekhi sovremennogo estestvoznaniya 2015; 1–6: 974–976.
  16. Rukovodstvo po laboratornym zhivotnym i al’ternativnym modelyam v biomeditsinskikh issledovaniyakh [Guidelines on laboratory animals and alternative models in biomedical studies]. Pod red. Karkishchenko N.N., Gracheva S.V. [Karkishchenko N.N., Grachev S.V. (editors)]. Moscow: Profil’ – 2S; 2010; 358 p.
  17. Krylov V.N. The effect of low-intensity EMP extremely high-frequency band on some homeostasis indices in animals. Vestnik Nizhegorodskogo universiteta im. Lobachevskogo. Seriya: Biologiya 2003; 1(6): 14–24.
  18. Betskii O.V., Lebedeva N.N., Yaremenko Yu.G. Equipment for EHF-therapy. Radiotekhnika 2007; 3: 4–15.
  19. Klinicheskaya laboratornaya diagnostika (metody i traktovka laboratornykh issledovaniy) [Clinical laboratory diagnostics (techniques and interpretation of laboratory investigations)]. Pod red. Kamyshnikova V.S. [Kamyshnikov V.S. (edior)]. Moscow: MED-press-inform; 2015; 720 p.
  20. Polyakova A.G., Soloveva A.G., Sazonova I.E., Zakharova D.V. Influence of electromagnetic radiation of extremely high frequencies on proand antioxidant status of blood in the experiment. Biofizika 2016; 61(1): 131–137.
  21. Polyakova A.G., Sazonova J.E., Volovik M.G., Peretyagin P.V., Zakharova D.V. The influence of low intensity EMR on the state of tissue blood flow in the skin loskute of rats. Vestnik vosstanovitel’noy meditsiny 2014; 6(64): 25–31.
  22. Tsymbal A.A., Kirichuk V.F., Antipov O.N., Kurturova M.O., Andronov E.V. Changes in the level of corticosterone in the blood of experimental animals exposed to terahertz waves at a frequency of atmospheric oxygen 129.0 GHz on a background of acute and prolonged stress. Biomeditsinskaya radioelektronika 2011; 8: 23–28.
  23. Roslyy I.M. Biokhimicheskie pokazateli v meditsine i biologii [Biochemical parameters in medicine and biology]. Moscow: Meditsinskoe informatsionnoe agentstvo; 2015; 616 p.
  24. Khiggins K. Rasshifrovka klinicheskikh laboratornykh analizov [Interpretation of clinical laboratory tests]. Pod red. Emmanuelya V.L. [Emmanuel’ V.L.]. M.: BINOM. Laboratoriya znaniy; 2013; 456 p.
  25. Ostapchuk A.E. Bilirubin. 2013. URL: http://youpedia.ru/medicina-b/bilirubin.html.
  26. Obmen serosoderzhashchikh aminokislot — metionina i tsisteina [Exchange of sulphur-containing amino acids: methionone and cysteine]. URL: http://biofile.ru/bio/10604.html.
  27. Kuznetsova V.L., Solov’eva A.G. Nitric oxide: properties, biological role, mechanisms of action. Sovremennye problemy nauki i obrazovaniya 2015; 4. URL: http://www.science-education.ru/ru/article/view? id=21037.
  28. Severin E.S., Aleynikova T.L., Osipov E.V., Silaeva S.A. Biologicheskaya khimiya [Biological chemistry]. Moscow: Meditsinskoe informatsionnoe agentstvo; 2008; 364 p.
  29. Kirichuk V.F., Tsymbal A.A. Patterns and mechanisms of the physiological effects of terahertz waves at frequencies of active cellular metabolites. Biomeditsinskaya radioelektronika 2014; 5: 61–66.
  30. Polyakova A.G., Aleinik D.Ya. Influence of low intensity microwaves on cellular activity of dermal fibroblasts of different genesis. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo 2013; 6(1): 146–152.
Polyakova А.G., Kuzneczova V.L., Presnyakova М.V. The Impact of Broadband Microwaves of Sub- and Millimeter Range on Biochemical Metabolism in Experimental Tissue Ischemia in vivo. Sovremennye tehnologii v medicine 2016; 8(3): 112, https://doi.org/10.17691/stm2016.8.3.13


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank