Today: Dec 22, 2024
RU / EN
Last update: Oct 30, 2024
Polylactide-Based Biodegradable Scaffolds Fabricated by Two-Photon Polymerization for Neurotransplantation

Polylactide-Based Biodegradable Scaffolds Fabricated by Two-Photon Polymerization for Neurotransplantation

Koroleva A.V., Guseva D.S., Konovalov N.A., Zharikova T.M., Ponimaskin E.G., Chichkov B.N., Bagratashvili V.N., Timashev P.S.
Key words: two-photon polymerization; polylactides; three-dimensional scaffolds; biocompatible materials; neuronal cells.
2016, volume 8, issue 4, page 23.

Full text

html pdf
2590
3608

The aim of the investigation was to form biodegradable 3D microstructured scaffolds compatible with progenitor neuronal cells as a perspective approach to neurotransplantation.

Materials and Methods. Photosensitive compositions were obtained from branched polylactides using Michler’s ketonе photoinitiator. The 3D microstructured scaffolds were fabricated by two-photon polymerization method.

Results. 3D microstructured scaffolds with a high spatial resolution have been fabricated from reactive polylactides by two-photon polymerization. The surface of scaffolds represents a structure with a high degree of roughness (1 μm average roughness). Dissociated hippocampal cells (from embryonic mice) adhere well to the matrix material, and active growth of axons and dendrites takes place. By day 10 of in vitro cultivation a well-branched neuron-glial network is visualized on a 3D construct. The developed structures have been found to possess a high biocompatibility with the primary hippocampal cultures, which suggests their application as matrix-carriers for the cells of the nervous system.

    1. Huling J., Ko I.K., Atala A., Yoo J.J. Fabrication of biomimetic vascular scaffolds for 3D tissue constructs using vascular corrosion casts. Acta Biomater 2016; 32: 190–197, https://doi.org/10.1016/j.actbio.2016.01.005.
    2. Kuznetsova D.S., Timashev P.S., Bagratashvili V.N., Zagaynova Е.V. Scaffold- and cell system-based bone grafts in tissue engineering (review). Sovremennye tehnologii v medicine 2014; 6(4): 201–212.
    3. Kuznetsova D.S., Timashev P.S., Dudenkova V.V., Meleshina A.V., Antonov E.A., Krotova L.I., Popov V.K., Bagratashvili V.N., Zagaynova E.V. Comparative analysis of proliferation and viability of multipotent mesenchymal stromal cells in 3D scaffolds with different architectonics. Bull Exp Biol Med 2016; 160(4): 535–541, https://doi.org/10.1007/s10517-016-3214-8.
    4. Tripathi G., Basu B. A porous hydroxyapatite scaffold for bone tissue engineering: physico-mechanical and biological evaluations. Ceramics International 2012; 38(1): 341–349.
    5. Gittard S.D., Nguyen A., Obata K., Koroleva A., Narayan R.J., Chichkov B.N. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator. Biomed Opt Express 2011; 2(11): 3167–3178, https://doi.org/10.1364/BOE.2.003167.
    6. Ovsianikov A., Malinauskas M., Schlie S., Chichkov B., Gittard S., Narayan R., Löbler M., Sternberg K., Schmitz K.-P., Haverich A. Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications. Acta Biomater 2011; 7(3): 967–974, https://doi.org/10.1016/j.actbio.2010.10.023.
    7. Gittard S.D., Koroleva A., Nguyen A., Fadeeva E., Gaidukeviciute A., Schlie S., Narayan R.J., Chichkov B. Two-photon polymerization microstructuring in regenerative medicine. Front Biosci (Elite Ed) 2013; 5: 602–609, https://doi.org/10.2741/E642.
    8. Sabir M.I., Xu X., Li L. A review on biodegradable polymeric materials for bone tissueengineering applications. J Mater Sci 2009; 44(21): 5713–5724, https://doi.org/10.1007/s10853-009-3770-7.
    9. Timashev P., Kuznetsova D., Koroleva A., Prodanets N., Deiwick A., Piskun Y., Bardakova K., Dzhoyashvili N., Kostjuk S., Zagaynova E., Rochev Y., Chichkov B., Bagratashvili V. Novel biodegradable star-shaped polylactide scaffolds for bone regeneration fabricated by two-photon polymerization. Nanomedicine 2016; 11(9): 1041–1053, https://doi.org/10.2217/nnm-2015-0022.
    10. Biran R., Martin D.C., Tresco P.A. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp Neurol 2005; 195(1): 115–126, https://doi.org/10.1016/j.expneurol.2005.04.020.
    11. Williams J.C., Hippensteel J.A., Dilgen J., Shain W., Kipke D.R. Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants. J Neural Eng 2007; 4(4): 410–423, https://doi.org/10.1088/1741-2560/4/4/007.
    12. Timashev P.S., Vedunova M.V., Guseva D., Ponimaskin E., Deiwick A., Mishchenko T.A., Mitroshina E.V., Koroleva A.V., Pimashkin A.S., Mukhina I.V., Panchenko V.Ya., Chichkov B.N., Bagratashvili V.N. 3D in vitro platform produced by two-photon polymerization for the analysis of neural network formation and function. Biomed Phys Eng Express 2016; 2(3), https://doi.org/10.1088/2057-1976/2/3/035001.
    13. Timashev P.S., Bardakova K.N., Minaev N.V., Demina T.S., Mishchenko T.A., Mitroshina E.V., Akovantseva A.A., Koroleva A.V., Asyutin D.S., Pimenova L.F., Konovalov N.A., Akopova T.A., Solov’eva A.B., Mukhina I.V., Vedunova M.V., Chichkov B.N., Bagratashvilі V.N. Compatibility of cells of the nervous system with structured biodegradable chitosan-based hydrogel matrices. Applied Biochemistry and Microbiology 2016; 52(5): 508–514, https://doi.org/10.1134/s0003683816050161.
    14. Kobe F., Guseva D., Jensen T.P., Wirth A., Renner U., Hess D., Müller M., Medrihan L., Zhang W., Zhang M., Braun K., Westerholz S., Herzog A., Radyushkin K., El-Kordi A., Ehrenreich H., Richter D.W., Rusakov D.A., Ponimaskin E. 5-HT7R/G12 signaling regulates neuronal morphology and function in an age-dependent manner. J Neurosci 2012; 32(9): 2915–2930, https://doi.org/10.1523/JNEUROSCI.2765-11.2012.
    15. Theiler S., Diamantouros S.E., Jockenhoevel S., Keul H., Moeller M. Synthesis and characterization of biodegradable polyester/polyether resins via Michael-type addition. Polymer Chemistry 2011; 2(10): 2273, https://doi.org/10.1039/c1py00262g.
Koroleva A.V., Guseva D.S., Konovalov N.A., Zharikova T.M., Ponimaskin E.G., Chichkov B.N., Bagratashvili V.N., Timashev P.S. Polylactide-Based Biodegradable Scaffolds Fabricated by Two-Photon Polymerization for Neurotransplantation. Sovremennye tehnologii v medicine 2016; 8(4): 23, https://doi.org/10.17691/stm2016.8.4.03


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank