Today: Jan 21, 2025
RU / EN
Last update: Dec 27, 2024
Establishment of the Clone of Gastrointestinal Stromal Tumor Cells with the Signs of Multiple Drug Resistance and Assessment of Its Properties

Establishment of the Clone of Gastrointestinal Stromal Tumor Cells with the Signs of Multiple Drug Resistance and Assessment of Its Properties

Khusnutdinov R.R., Galembikova A.R., Boichuk S.V.
Key words: gastrointestinal stromal tumors; GISTs; tumor cell cloning; paclitaxel; doxorubicin; etoposide; cytotoxicity; resistance.
2016, volume 8, issue 4, page 36.

Full text

html pdf
2426
2194

The aim of the investigation was to obtain a tumor cell clone of gastrointestinal stromal tumors (GISTs) possessing resistance to chemotherapeutic agents of different mode of action, and to assess its sensitivity to various groups of chemotherapeutic agents.

Materials and Methods. GIST cell line T-1 was used to obtain a clone of chemoresistant GIST cells. The viability assessment of tumor cells was carried out by using i-CELLigence RTCA cell analyzer (ACEA Biosciences, USA). The sensitivity of GIST T-1-29R cell clone to type II topoisomerase inhibitors (doxorubicin and etoposide); chemotherapeutic agents affecting the dynamic state of the spindle microtubules (vinblastine and paclitaxel); hydroxyurea; cisplatin; targeted drug imatinib were evaluated by using the MTT-based assay. Expression of apoptosis, the markers of DNA damage and chemoresistance was examined by immunoblotting.

Results. A clone of GIST T-1 tumor cell line with the signs of chemoresistance (T-1-29R) was obtained after 8-month of cultivation of GIST tumor cells in the presence of the gradually increasing doses of paclitaxel. T-1-29R cells were found to possess resistance to paclitaxel, and cross-resistance to doxorubicin and etoposide, as well. Sensitivity of T-1-29R cells to other chemotherapeutic agents, including imatinib, did not change. Some multiple drug resistance proteins, e.g. MDR-1, were revealed to have an increased expression level in T-1-29R tumor cells when compared to parent T-1 cells.

Conclusion. A clone of GIST T-1-29R cell line possesses phenotypical features of multiple drug resistance, that makes its perspective use for the assessment of GIST chemosensitivity, and for screening of new compounds for their cytotoxic and antitumor activities in vitro and in vivo, as well.

  1. Verweij J., Casali P.G., Zalcberg J., LeCesne A., Reichardt P., Blay J.Y., Issels R., van Oosterom A., Hogendoorn P.C., Van Glabbeke M., Bertulli R., Judson I. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet 2004; 364(9440): 1127–1134, https://doi.org/10.1016/s0140-6736(04)17098-0.
  2. Dematteo R.P., Heinrich M.C., El-Rifai W.M., Demetri G. Clinical management of gastrointestinal stromal tumors: before and after STI-571. Hum Pathol 2002; 33(5): 466–477, https://doi.org/10.1053/hupa.2002.124122.
  3. Pessetto Z.Y., Weir S.J., Sethi G., Broward M.A., Godwin A.K. Drug repurposing for gastrointestinal stromal tumor. Mol Cancer Ther 2013; 12(7): 1299–1309, https://doi.org/10.1158/1535-7163.mct-12-0968.
  4. Pessetto Z.Y., Ma Y., Hirst J.J., von Mehren M., Weir S.J., Godwin A.K. Drug repurposing identifies a synergistic combination therapy with imatinib mesylate for gastrointestinal stromal tumor. Mol Cancer Ther 2014; 13(10): 2276–2287, https://doi.org/10.1158/1535-7163.MCT-14-0043.
  5. Boichuk S., Lee D.J., Mehalek K.R., Makielski K.R., Wozniak A., Seneviratne D.S., Korzeniewski N., Cuevas R., Parry J.A., Brown M.F., Zewe J., Taguchi T., Kuan S.F., Schöffski P., Debiec-Rychter M., Duensing A. Unbiased compound screening identifies unexpected drug sensitivities and novel treatment options for gastrointestinal stromal tumors. Cancer Res 2014; 74(4): 1200–1213, https://doi.org/10.1158/0008-5472.CAN-13-1955.
  6. Galembikova A.R., Dunaev P.D., Boichuk S.V. Sensitivity of gastrointestinal stromal tumors (GISTs) to the various chemotherapeutic agents. Sovremennye problemy nauki i obrazovaniya 2015; 6. URL: http://www.science-education.ru/en/article/vie w?id=23728.
  7. Boichuk S.V., Galembikova A.R., Ramazanov B.R., Duensing A. Imatinib enchances the sensitivity of gastrointestinal stromal tumors to topoisomerase II inhibitors. Advances in Molecular Oncology 2015; 2(1): 076, https://doi.org/10.17650/2313-805X.2015.2.1.076-081.
  8. Boichuk S.V., Galembikova A.R., Martinova E.V., Ramazanov B.R., Duensing A. Imatinib effectively inhibits homologous recombination and sensitizes gastrointestinal stromal tumor cells to the topoisomerase type II inhibitors. Tsitologiya 2016; 58(3): 178–185.
  9. Maurel J., Martins A.S., Poveda A., López-Guerrero J.A., Cubedo R., Casado A., Martínez-Trufero J., Ramón Ayuso J., Lopez-Pousa A., Garcia-Albeniz X., Garcia del Muro X., de Alava E. Imatinib plus low-dose doxorubicin in patients with advanced gastrointestinal stromal tumors refractory to high-dose imatinib. A phase I–II study by the Spanish Group for Research on Sarcomas. Cancer 2010; 116(15): 3692–3701, https://doi.org/10.1002/cncr.25111.
  10. Taguchi T., Sonobe H., Toyonaga S., Yamasaki I., Shuin T., Takano A., Araki K., Akimaru K., Yuri K. Conventional and molecular cytogenetic characterization of a new human cell line, GIST-T1, established from gastrointestinal stromal tumor. Lab Invest 2002; 82(5): 663–665, https://doi.org/10.1038/labinvest.3780461.
Khusnutdinov R.R., Galembikova A.R., Boichuk S.V. Establishment of the Clone of Gastrointestinal Stromal Tumor Cells with the Signs of Multiple Drug Resistance and Assessment of Its Properties. Sovremennye tehnologii v medicine 2016; 8(4): 36, https://doi.org/10.17691/stm2016.8.4.05


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank