Today: Jan 21, 2025
RU / EN
Last update: Dec 27, 2024
The Influence of Different Types of Upconversion Nanoparticles Surface Coatings on Neurotoxicity

The Influence of Different Types of Upconversion Nanoparticles Surface Coatings on Neurotoxicity

Mitroshina E.V., Mishchenko T.A., Vedunova M.V., Yudintsev A.V., Generalova A.N., Nechaev A.V., Deyev S.M., Mukhina I.V., Zvyagin A.V.
Key words: upconversion nanoparticles; particle toxicology; primary hippocampal cultures; neural network; functional network activity.
2016, volume 8, issue 4, page 133.

Full text

html pdf
2249
3135

The aim of the investigation was to study the effect of upconversion nanoparticles (UCNPs) with different surface coatings on viability and functional neural network activity of primary hippocampal cultures.

Materials and Methods. The UCNPs with three surface coating modifications (tetramethylammonium hydroxide (TMAH), polymaleic acid octadecene and polyethyleneimine (PEI)) were synthesized by a solvothermal technique with further hydrophilization. Primary hippocampal cultures, obtained from C57BL/6 mice embryos (Е18), were incubated with tested UCNPs in the concentration of 0.8 and 8 mg/ml during 72 h. The cell viability detection, evaluation of morphological changes by immunocytochemical staining as well as the UCNPs influence on the main parameters of the functional neural network calcium activity and on the endocytosis processes were carried out.

Results. Our studies revealed that UCNPs caused a dose-dependent cytotoxic effect on primary hippocampal cultures, wherein the severity of this effect directly related to the type of UCNPs surface coating. The greatest cytotoxicity was identified for UCNP–PEI, and the least — for UCNP–TMAH. UCNPs toxicity is manifested in significant morphological changes of neural networks and in the increase the number of dead cells (р<0.05) in primary hippocampal cultures. Moreover, a significant decrease (р<0.05) in the main parameters of spontaneous functional calcium activity was shown.

Conclusion. A comprehensive investigation of the nanoparticles effects on primary hippocampal cultures showed that all tested UCNPs have the strong toxic effect to the nervous system cells.

  1. Stuart M.A.C., Huck W.T.S., Genzer J., Müller M., Ober C., Stamm M., Sukhorukov G.B., Szleifer I., Tsukruk V.V., Urban M., Winnik F., Zauscher S., Luzinov I., Minko S. Emerging applications of stimuli-responsive polymer materials. Nat Mater 2010; 9(2): 101–113, https://doi.org/10.1038/nmat2614.
  2. Yu M.K., Park J., Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2012; 2(1): 3–44, https://doi.org/10.7150/thno.3463.
  3. Smith N.M., Gachulincova I., Ho D., Bailey C., Bartlett C.A., Norret M., Murphy J., Buckley A., Rigby P.J., House M.J., St. Pierre T., Fitzgerald M., Iyer K.S., Dunlop S.A. An unexpected transient breakdown of the blood brain barrier triggers passage of large intravenously administered nanoparticles. Sci Rep 2016; 6: 22595, https://doi.org/10.1038/srep22595.
  4. Posadas I., Monteagudo S., Ceña V. Nanoparticles for brain-specific drug and genetic material delivery, imaging and diagnosis. Nanomedicine (Lond) 2016; 11(7): 833–849, https://doi.org/10.2217/nnm.16.15.
  5. Han L., Kong D.K., Zheng M.-q., Murikinati S., Ma C., Yuan P., Li L., Tian D., Cai Q., Ye C., Holden D., Park J.-H., Gao X., Thomas J.-L., Grutzendler J., Carson R.E., Huang Y., Piepmeier J.M., Zhou J. Increased nanoparticle delivery to brain tumors by autocatalytic priming for improved treatment and imaging. ACS Nano 2016; 10(4): 4209–4218, https://doi.org/10.1021/acsnano.5b07573.
  6. Gioux S., Choi H.S., Frangioni J.V. Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation. Mol Imaging 2010; 9(5): 237–255.
  7. Das G.K., Stark D.T., Kennedy I.M. Potential toxicity of up-converting nanoparticles encapsulated with a bilayer formed by ligand attraction. Langmuir 2014; 30(27): 8167–8176, https://doi.org/10.1021/la501595f.
  8. Lehman S.E., Morris A.S., Mueller P.S., Salem A.K., Grassian V.H., Larsen S.C. Silica nanoparticle-generated ROS as a predictor of cellular toxicity: mechanistic insights and safety by design. Environ Sci Nano 2016; 3(1): 56–66, https://doi.org/10.1039 /c5en00179j.
  9. Zhou J., Liu Z., Li F. Upconversion nanophosphors for small-animal imaging. Chem Soc Rev 2012; 41(3): 1323–1349, https://doi.org/10.1039/c1cs15187h.
  10. Guller A.E., Generalova A.N., Petersen E.V., Nechaev A.V., Trusova I.A., Landyshev N.N., Nadort A., Grebenik E.A., Deyev S.M., Shekhter A.B., Zvyagin A.V. Cytotoxicity and non-specific cellular uptake of bare and surface-modified upconversion nanoparticles in human skin cells. Nano Research 2015; 8(5): 1546–1562, https://doi.org/10.1007/s12274-014-0641-6.
  11. Generalova A.N., Kochneva I.K., Khaydukov E.V., Semchishen V.A., Guller A.E., Nechaev A.V., Shekhter A.B., Zubov V.P., Zvyagin A.V., Deyev S.M. Submicron polyacrolein particles in situ embedded with upconversion nanoparticles for bioassay. Nanoscale 2015; 7(5): 1709–1717, https://doi.org/10.1039/c4nr05908e.
  12. Grebenik E.A., Nadort A., Generalova A.N., Nechaev A.V., Sreenivasan V.K., Khaydukov E.V., Semchishen V.A., Popov A.P., Sokolov V.I., Akhmanov A.S., Zubov V.P., Klinov D.V., Panchenko V.Y., Deyev S.M., Zvyagin A.V. Feasibility study of the optical imaging of a breast cancer lesion labeled with upconversion nanoparticle biocomplexes. J Biomed Opt 2013; 18(7): 76004, https://doi.org/10.1117/1.JBO.18.7.076004.
  13. Vedunova M.V., Mishchenko T.A., Mitroshina E.V., Mukhina I.V. TrkB-mediated neuroprotective and antihypoxic properties of brain-derived neurotrophic factor. Oxid Med Cell Longev 2015; 2015: 453901, https://doi.org/10.1155/2015/453901.
  14. Vedunova M., Sakharnova T., Mitroshina E., Perminova M., Pimashkin A., Zakharov Yu., Dityatev A., Mukhina I. Seizure-like activity in hyaluronidase-treated dissociated hippocampal cultures. Front Cell Neurosci 2013; 7: 149, https://doi.org/10.3389/fncel.2013.00149.
  15. Shirokova О.М., Frumkina L.Е., Vedunova М.V., Mitroshina Е.V., Zakharov Y.N., Khaspekov L.G., Mukhina I.V. Morphofunctional patterns of neuronal networks developing in dissociated hippocampal cell cultures. Sovremennye tehnologii v medicine 2013; 5(2): 6–13.
  16. Zhao L., Kutikov A., Shen J., Duan C., Song J., Han G. Stem cell labeling using polyethylenimine conjugated (α-NaYbF4:Tm3+)/CaF2 upconversion nanoparticles. Theranostics 2013; 3(4): 249–257, https://doi.org/10.7150/thno.5432.
  17. Sikora B., Fronc K., Kamińska I., Koper K., Szewczyk S., Paterczyk B., Wojciechowski T., Sobczak K., Minikayev R., Paszkowicz W., Stępień P., Elbaum D. Transport of NaYF4:Er3+, Yb3+ up-converting nanoparticles into HeLa cells. Nanotechnology 2013; 24(23): 235702, https://doi.org/10.1088/0957-4484/24/23/235702.
  18. Ceja-Fdez A., López-Luke T., Oliva J., Vivero-Escoto J., Gonzalez-Yebra A.L., Rojas R.A., Martínez-Pérez A., de la Rosa E. Labeling of HeLa cells using ZrO2:Yb3+–Er3+ nanoparticles with upconversion emission. J Biomed Opt 2015; 20(4): 046006, https://doi.org/10.1117/1.JBO.20.4.046006.
Mitroshina E.V., Mishchenko T.A., Vedunova M.V., Yudintsev A.V., Generalova A.N., Nechaev A.V., Deyev S.M., Mukhina I.V., Zvyagin A.V. The Influence of Different Types of Upconversion Nanoparticles Surface Coatings on Neurotoxicity. Sovremennye tehnologii v medicine 2016; 8(4): 133, https://doi.org/10.17691/stm2016.8.4.18


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank