Today: Jan 21, 2025
RU / EN
Last update: Dec 27, 2024
A Platform for Studying Molecular and Cellular Mechanisms of Parkinson’s Disease Based on Human Induced Pluripotent Stem Cells

A Platform for Studying Molecular and Cellular Mechanisms of Parkinson’s Disease Based on Human Induced Pluripotent Stem Cells

Novosadova E.V., Nekrasov E.D., Chestkov I.V., Surdina A.V., Vasina E.M., Bogomazova A.N., Manuilova E.S., Arsenyeva E.L., Simonova V.V., Konovalova E.V., Fedotova E.Yu., Abramycheva N.Yu., Khaspekov L.G., Grivennikov I.A., Tarantul V.Z., Kiselev S.L., Illarioshkin S.N.
Key words: cell reprogramming; induced pluripotent stem cells; platform for iPSC; fibroblasts; dopaminergic neurons; Parkinson’s disease.
2016, volume 8, issue 4, page 157.

Full text

html pdf
2194
2471

The aim of the study was to obtain induced pluripotent stem cells (iPSCs) from patients with various forms of Parkinson’s disease (PD), and to create on this basis a platform for studying the pathogenesis of the disease at the molecular and cellular level with the development of a protocol of the stem cell differentiation.

Materials and Methods. iPSCs were derived from cultured skin fibroblasts, taken from five patients with various forms of PD (PARK8, PARK2, GBA-associated and sporadic forms), and reprogrammed with the help of lentiviral vectors and on the basis of Sendai virus. The obtained iPSCs clones were cultured to the stage of embryonic bodies and, after spontaneous differentiation, stained immunocytochemically. Gene expression and neural markers in these iPSCs lines were analysed using reverse transcription polymerase chain reaction.

Results. The obtained iPSCs clones had a normal 46 XY karyotype, stained specifically with Oct4, Nanog, TRA-1-81 and SSEA-4 antibodies, and expressed marker genes responsible for maintaining the pluripotent condition. In the cultures of differentiated iPSCs, cells positively stained for the markers of the three primary germ layers (ectoderm, mesoderm, and endoderm) have been revealed. An effective protocol of iPSCs differentiation into dopaminergic neurons has been worked out, and confirmed by the expression of the specific marker — tyrosine hydroxylase enzyme.

Conclusion. On the basis of explicitly characterized iPSCs from patients with various forms of PD and the developed cellular protocol, a platform for studying the pathogenesis of PD at the molecular and cellular level has been created. Obtaining cell population enriched with dopaminergic neurons opens a perspective for their application for personalized cell replacement PD therapy.

  1. Kasten M., Chade A., Tanner C.M. Epidemiology of Parkinson’s disease. In: Handbook of clinical neurology. Part I. Elsevier; 2007; p. 129−151, https://doi.org/10.1016/s0072-9752(07)83006-5.
  2. Wirdefeldt K., Adami H.-O., Cole P., Trichopoulos D., Mandel J. Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur J Epidemiol 2011; 26(S1): 1–58, https://doi.org/10.1007/s10654-011-9581-6.
  3. Illarioshkin S.N. Parkinsonism with an early onset. Nervnye bolezni 2006; 3: 14–20.
  4. Thomas B., Beal M.F. Parkinson’s disease. Hum Mol Genet 2007; 16: R183–R194, https://doi.org/10.1093/hmg/ddm159.
  5. Illarioshkin S.N. DNK-diagnostika i mediko-geneticheskoe konsul’tirovanie [DNA diagnostics and genetic consultation]. Moscow: MIA; 2004.
  6. Illarioshkin S.N. Modern concepts of Parkinson’s disease etiology. Nevrologicheskiy zhurnal 2015; 20(4): 4–13.
  7. Lin M.K., Farrer M.J. Genetics and genomics of Parkinson’s disease. Genome Med 2014; 6(6): 48, https://doi.org/10.1186/gm566.
  8. Schiesling C., Kieper N., Seidel K., Krüger R. Review: familial Parkinson’s disease — genetics, clinical phenotype and neuropathology in relation to the common sporadic form of the disease. Neuropathol Appl Neurobiol 2008; 34(3): 255–271, https://doi.org/10.1111/j.1365-2990.2008.00952.x.
  9. Chai C., Lim K.L. Genetic insights into sporadic Parkinson’s disease pathogenesis. Curr Genomics 2013; 14(8): 486–501, https://doi.org/10.2174/1389202914666131210195808.
  10. Healy D.G., Falchi M., O’Sullivan S.S., Bonifati V., Durr A., Bressman S., Brice A., Aasly J., Zabetian C.P., Goldwurm S., Ferreira J.J., Tolosa E., Kay D.M., Klein C., Williams D.R., Marras C., Lang A.E., Wszolek Z.K., Berciano J., Schapira A.H., Lynch T., Bhatia K.P., Gasser T., Lees A.J., Wood N.W.; International LRRK2 Consortium. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol 2008; 7(7): 583–590, https://doi.org/10.1016/S1474-4422(08)70117-0.
  11. Kilarski L.L., Pearson J.P., Newsway V., Majounie E., Knipe M.D., Misbahuddin A., Chinnery P.F., Burn D.J., Clarke C.E., Marion M.H., Lewthwaite A.J., Nicholl D.J., Wood N.W., Morrison K.E., Williams-Gray C.H., Evans J.R., Sawcer S.J., Barker R.A., Wickremaratchi M.M., Ben-Shlomo Y., Williams N.M., Morris H.R. Systematic review and UK-based study of PARK2 (parkin), PINK1, PARK7 (DJ-1) and LRRK2 in early-onset Parkinson’s disease. Mov Disord 2012; 27(12): 1522–1529, https://doi.org/10.1002/mds.25132.
  12. Saiki S., Sato S., Hattori N. Molecular pathogenesis of Parkinson’s disease: update. J Neurol Neurosurg Psychiatry 2012; 83(4): 430–436, https://doi.org/10.1136/jnnp-2011-301205.
  13. Sulzer D., Surmeier D.J. Neuronal vulnerability, pathogenesis, and Parkinson’s disease. Mov Disord 2013; 28(1): 41–50, https://doi.org/10.1002/mds.25095.
  14. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663–676, https://doi.org/10.1016/j.cell.2006.07.024.
  15. Nakagawa M., Koyanagi M., Tanabe K., Takahashi K., Ichisaka T., Aoi T., Okita K., Mochiduki Y., Takizawa N., Yamanaka S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 2008; 26(1): 101–106, https://doi.org/10.1 038/nbt1374.
  16. Nekrasov E.D., Lebedeva O.S., Chestkov I.V., Syusina M.A., Fedotova E.Yu., Lagarkova M.A., Kiselev S.L., Grivennikov I.A., Illarioshkin S.N. Obtaining and characteristics of human induced pluripotent stem cells from skin fibroblasts of patients with neurodegenerative diseases. Geny i kletki 2011; 6(4): 82–88.
  17. Lebedeva O.S., Lagar’kova M.A., Kiselev S.L., Mukhina I.V., Vedunova M.V., Usova O.V., Stavrovskaya A.V., Yamshchikova N.G., Fedotova E.Yu., Grivennikov I.A., Khaspekov L.G., Illarioshkin S.N. The morphofunctional properties of induced pluripotent stem cells derived from human skin fibroblasts and differentiated to dopaminergic neurons. Neurochemical Journal 2013; 7(3): 207–214, https://doi.org/10.1134/s1819712413030082.
  18. Medvedev S.P., Shevchenko A.I., Sukhikh G.T., Zakiyan S.M. Indutsirovannye plyuripotentnye stvolovye kletki [Induced pluripotent stem cells]. Novosibirsk: Izd-vo SO RAN; 2014.
  19. Bogomazova A.N., Vassina E.M., Kiselev S.L., Lagarkova M.A., Lebedeva O.S., Nekrasov E.D., Panova A.V., Philonenko E.S., Khomyakova E.A., Tskhovrebova L.V., Chestkov I.V., Shutova M.V. Genetic cell reprogramming: a new technology for basic research and applied usage. Russian Journal of Genetics 2015; 51(4): 386–396, https://doi.org/10.1134/s102279541504002x.
  20. Byers B., Lee H., Reijo Pera R. Modeling Parkinson’s disease using induced pluripotent stem cells. Curr Neurol Neurosci Rep 2012; 12(3): 237–242, https://doi.org/10.1007/s11910-012-0270-y.
  21. Yoshikawa T., Samata B., Ogura A., Miyamoto S., Takahashi J. Systemic administration of valproic acid and zonisamide promotes differentiation of induced pluripotent stem cell-derived dopaminergic neurons. Front Cell Neurosci 2013; 7, https://doi.org/10.3389/fncel.2013.00011.
  22. Narytnyk A., Verdon B., Loughney A., Sweeney M., Clewes O., Taggart M.J., Sieber-Blum M. Differentiation of human epidermal neural crest stem cells (hEPI-NCSC) into virtually homogenous populations of dopaminergic neurons. Stem Cell Rev 2014; 10(2): 316–326, https://doi.org/10.1007/s12015-013-9493-9.
  23. Nekrasov E.D., Vigont V.A., Klyushnikov S.A., Lebedeva O.S., Vassina E.M., Bogomazova A.N., Chestkov I.V., Semashko T.A., Kiseleva E., Suldina L.A., Bobrovsky P.A., Zimina O.A., Ryazantseva M.A., Skopin A.Y., Illarioshkin S.N., Kaznacheyeva E.V., Lagarkova M.A., Kiselev S.L. Manifestation of Huntington’s disease pathology in human induced pluripotent stem cell-derived neurons. Mol Neurodegener 2016; 11: 27, https://doi.org/10.1186/s13024-016-0092-5.
  24. Huangfu D., Maehr R., Guo W., Eijkelenboom A., Snitow M., Chen A.E., Melton D.A. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 2008; 26(7): 795–797, https://doi.org/10.1038/nbt1418.
  25. Shi Y., Do J.T., Desponts C., Hahm H.S., Schöler H.R., Ding S. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2008; 2(6): 525–528, https://doi.org/10.1016/j.stem.2008.05.011.
  26. Kriks S., Shim J.W., Piao J., Ganat Y.M., Wakeman D.R., Xie Z., Carrillo-Reid L., Auyeung G., Antonacci C., Buch A., Yang L., Beal M.F., Surmeier D.J., Kordower J.H., Tabar V., Studer L. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 2011; 480(7378): 547–551, https://doi.org/10.1038/nature10648.
  27. Chambers S.M., Fasano C.A., Papapetrou E.P., Tomishima M., Sadelain M., Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 2009; 27(3): 275–280, https://doi.org/10.1038/nbt.1529.
  28. Yu P.B., Hong C.C., Sachidanandan C., Babitt J.L., Deng D.Y., Hoyng S.A., Lin H.Y., Bloch K.D., Peterson R.T. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat Chem Biol 2008; 4(1): 33–41, https://doi.org/10.1038/nchembio.2007.54.
  29. Gilbert S.F. Developmental biology. Sunderland: Sinauer Associates; 2003.
  30. Wurst W., Bally-Cuif L. Neural plate patterning: upstream and downstream of the isthmic organizer. Nat Rev Neurosci 2001; 2(2): 99–108, https://doi.org/10.1038/35053516.
  31. Li X.-J., Hu B.-Y., Jones S.A., Zhang Y.-S., LaVaute T., Du Z.-W., Zhang S.-C. Directed differentiation of ventral spinal progenitors and motor neurons from human embryonic stem cells by small molecules. Stem Cells 2008; 26(4): 886–893, https://doi.org/10.1634/stemcells.2007-0620.
  32. Hochbaum D., Barila G., Ribeiro-Neto F., Altschuler D.L. Radixin assembles cAMP effectors Epac and PKA into a functional cAMP compartment: role in cAMP-dependent cell proliferation. J Biol Chem 2010; 286(1): 859–866, https://doi.org/10.1074/jbc.m110.163816.
  33. Sarnat H.B. Clinical neuropathology practice guide 5-2013: markers of neuronal maturation. Clin Neuropathol 2013; 32(9): 340–369, https://doi.org/10.5414/np300638.
  34. Cooper O., Seo H., Andrabi S., Guardia-Laguarta C., Graziotto J., Sundberg M., McLean J.R., Carrillo-Reid L., Xie Z., Osborn T., Hargus G., Deleidi M., Lawson T., Bogetofte H., Perez-Torres E., Clark L., Moskowitz C., Mazzulli J., Chen L., Volpicelli-Daley L., Romero N., Jiang H., Uitti R.J., Huang Z., Opala G., Scarffe L.A., Dawson V.L., Klein C., Feng J., Ross O.A., Trojanowski J.Q., Lee V.M., Marder K., Surmeier D.J., Wszolek Z.K., Przedborski S., Krainc D., Dawson T.M., Isacson O. Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease. Sci Transl Med 2012; 4(141): 141ra90, https://doi.org/10.1126/scitranslmed.3003985.
  35. Howden S.E., Thomson J.A. Gene targeting of human pluripotent stem cells by homologous recombination. Methods Mol Biol 2014; 1114: 37–55, https://doi.org/10.1007/978-1-62703-761-7_4.
  36. Mukherjee S., Thrasher A.J. Gene correction of induced pluripotent stem cells derived from a murine model of X-linked chronic granulomatous disorder. Methods Mol Biol 2014; 1114: 427–440, https://doi.org/10.1007/978-1-62703-761-7_28.
  37. Rao M., Gottesfeld J.M. Introduction to thematic minireview series: development of human therapeutics based on induced pluripotent stem cell (iPSC) technology. J Biol Chem 2013; 289(8): 4553–4554, https://doi.org/10.1074/jbc.r113.543652.
Novosadova E.V., Nekrasov E.D., Chestkov I.V., Surdina A.V., Vasina E.M., Bogomazova A.N., Manuilova E.S., Arsenyeva E.L., Simonova V.V., Konovalova E.V., Fedotova E.Yu., Abramycheva N.Yu., Khaspekov L.G., Grivennikov I.A., Tarantul V.Z., Kiselev S.L., Illarioshkin S.N. A Platform for Studying Molecular and Cellular Mechanisms of Parkinson’s Disease Based on Human Induced Pluripotent Stem Cells. Sovremennye tehnologii v medicine 2016; 8(4): 157, https://doi.org/10.17691/stm2016.8.4.20


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank