Today: Jan 21, 2025
RU / EN
Last update: Dec 27, 2024
Intracellular Calcium Network Activity in the Hippocampus CA3 Region in Rat Postnatal Development

Intracellular Calcium Network Activity in the Hippocampus CA3 Region in Rat Postnatal Development

Mitaeva Y.I., Mozherov A.M., Kastalskiy I.А., Mishchenko T.A., Mukhina I.V.
Key words: neuronal network; hippocampus; CA3 cells; astrocytes; Ca2+ imaging; postnatal development.
2016, volume 8, issue 4, page 167.

Full text

html pdf
1799
1927

Hippocampus — the structure of the central nervous system, which is involved in the mechanisms of memory consolidation. The hippocampus has a certain topology distribution of cellular elements, which provides the many cellular networks. One of them is the network of neurons in the CA3 field. In this article discusses the features of the Ca2+ signaling system of cells of CA3 field of rat hippocampus of early (P5–8, P14–16) and late (P21–25) postnatal development in different physiological conditions: spontaneous activity, in violation of the excitation in the neural network by adding tetrodotoxin (Ca2+ signaling), as well as the effects of excitatory neurotransmitters (ATP, L-glutamate).This work extends the concepts of Ca2+ signaling in rat hippocampus cells of early and late stages of postnatal ontogenesis. The study showed that changes in Ca2+ activity in the cells CA3 field of rat hippocampal taking place during the neonatal period of postnatal ontogenesis directly related to the functioning of neural networks and the metabolic state of the cells.

  1. Nedergaard M., Rodríguez J.J., Verkhratsky A. Glial calcium and diseases of the nervous system. Cell Calcium 2010; 47(2): 140–149, https://doi.org/10.1016/j.ceca.2009.11.010.
  2. Petersen O.H., Michalak M., Verkhratsky A. Calcium signalling: past, present and future. Cell Calcium 2005; 38(3–4): 161–169, https://doi.org/10.1016/j.ceca.2005.06.023.
  3. Nett W.J., Oloff S.H., McCarthy K.D. Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J Neurophysiol 2002; 87(1): 528–537.
  4. Takahashi N., Sasaki T., Usami A., Matsuki N., Ikegaya Y. Watching neuronal circuit dynamics through functional multineuron calcium imaging (fMCI). Neurosci Res 2007; 58(3): 219–225, https://doi.org/10.1016/j.neures.2007.03.001.
  5. Verkhratsky A., Rodríguez J.J., Parpura V. Calcium signalling in astroglia. Mol Cell Endocrinol 2012; 353(1–2): 45–56, https://doi.org/10.1016/j.mce.2011.08.039.
  6. Clapham D.E. Calcium signaling. Cell 2007; 131(6): 1047–1058, https://doi.org/10.1016/j.cell.2007.11.028.
  7. Parpura V., Verkhratsky A. Astrogliopathology: could nanotechnology restore aberrant calcium signalling and pathological astroglial remodelling? Biochim Biophys Acta 2013; 1833(7): 1625–1631, https://doi.org/10.1016/j.bbamcr.2012.11.023.
  8. Rose C.R., Konnerth A. Stores not just for storage. Neuron 2001; 31(4): 519–522, https://doi.org/10.1016/s0896-6273(01)00402-0.
  9. Collin T., Marty A., Llano I. Presynaptic calcium stores and synaptic transmission. Curr Opin Neurobiol 2005; 15(3): 275–281, https://doi.org/10.1016/j.conb.2005.05.003.
  10. Mazzoni A., Broccard F.D., Garcia-Perez E., Bonifazi P., Ruaro M.E., Torre V. On the dynamics of the spontaneous activity in neuronal networks. PLoS One 2007; 2(5): e439, https://doi.org/10.1371/journal.pone.0000439.
  11. Li X., Ouyang G., Usami A., Ikegaya Y., Sik A. Scale-free topology of the CA3 hippocampal network: a novel method to analyze functional neuronal assemblies. Biophys J 2010; 98(9): 1733–1741, https://doi.org/10.1016/j.bpj.2010.01.013.
  12. Shi Y., Ikrar T., Olivas N.D., Xu X. Bidirectional global spontaneous network activity precedes the canonical unidirectional circuit organization in the developing hippocampus. J Comp Neurol 2014; 522(9): 2191–2208, https://doi.org/10.1002 /cne.23528.
  13. Tsukamoto-Yasui M., Sasaki T., Matsumoto W., Hasegawa A., Toyoda T., Usami A., Kubota Y., Ochiai T., Hori T., Matsuki N., Ikegaya Y. Active hippocampal networks undergo spontaneous synaptic modification. PLoS One 2007; 2(11): e1250, https://doi.org/10.1371/journal.pone.0001250.
  14. Sipilä S. Cellular and network mechanisms generating spontaneous population events in the immature rat hippocampus. Academic Dissertation. Helsinki; 2006.
  15. Paredes R.M., Etzler J.C., Watts L.T., Zheng W., Lechleiter J.D. Chemical calcium indicators. Methods 2008; 46(3): 143–151, https://doi.org/10.1016/j.ymeth.2008.09.025.
  16. Kang J., Kang N., Yu Y., Zhang J., Petersen N., Tian G-F. N.M. Sulforhodamine 101 induces long-tem potentiation of intrinsic excitability and synaptic efficacy in hippocampal CA1 pyramidal neurons. Neuroscience 2011; 169(4): 1601–1609, https://doi.org/10.1016/j.neuroscience.2010.06.020.
  17. Zakharov Yu.N., Mitroshina E.V., Vedunova M.V., Korotchenko S.A., Kalintseva Ya.I., Mukhina I.V., Potanina A.V. Fluorescence analysis of the metabolic activity patterns of neuronal-glial network. Journal of Optical Technology 2012; 79(6): 47–51, https://doi.org/10.1364/jot.79.000348.
  18. Bernstein M., Behnisch T., Balschun D., Reymann K.G., Reiser G. Pharmacological characterisation of metabotropic glutamatergic and purinergic receptors linked to Ca2+ signalling in hippocampal astrocytes. Neuropharmacology 1998; 37(2): 169–178, https://doi.org/10.1016/S0028-3908(98)00012-4.
  19. Zur Nieden R., Deitmer J.W. The role of metabotropic glutamate receptors for the generation of calcium oscillations in rat hippocampal astrocytes in situ. Cereb Cortex 2006; 16(5): 676–687, https://doi.org/10.1093/cercor/bhj013.
  20. Zhong J., Carrozza D.P., Williams K., Pritchett D.B., Molinoff P.B. Expression of mRNAs encoding subunits of the NMDA receptor in developing rat brain. J Neurochem 1995; 64(2): 531–539, https://doi.org/10.1046/j.1471-4159.1995.64020531.x.
  21. Zhou M., Kimelberg H.K. Freshly isolated hippocampal CA1 astrocytes comprise two populations differing in glutamate transporter and AMPA receptor expression. J Neurosci 2001; 21(20): 7901–7908.
  22. Hunter R.G., Bellani R., Bloss E., Costa A., McCarthy K., McEwen B.S. Regulation of kainate receptor subunit mRNA by stress and corticosteroids in the rat hippocampus. PLoS One 2009; 4(1): e4328, https://doi.org/10.1371/journal.pone.0004328.
  23. Butt A.M. ATP: a ubiquitous gliotransmitter integrating neuron-glial networks. Semin Cell Dev Biol 2011; 22(2): 205–213, https://doi.org/10.1016/j.semcdb.2011.02.023.
  24. Ben-Ari Y., Cherubini E., Corradetti R., Gaiarsa J.-L. Giant synaptic potentials in immature rat ca3 hippocampal neurones. J Physiol 1989; 416(1): 303–325, https://doi.org/10.1113/jphysiol.1989.sp017762.
  25. Khazipov R., Esclapez M., Caillard O., Bernard C., Khalilov I., Tyzio R., Hirsch J., Dzhala V., Berger B., Ben-Ari Y. Early development of neuronal activity in the primate hippocampus in utero. J Neurosci 2001; 21(24): 9770–9781.
Mitaeva Y.I., Mozherov A.M., Kastalskiy I.А., Mishchenko T.A., Mukhina I.V. Intracellular Calcium Network Activity in the Hippocampus CA3 Region in Rat Postnatal Development. Sovremennye tehnologii v medicine 2016; 8(4): 167, https://doi.org/10.17691/stm2016.8.4.21


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank