Today: Nov 23, 2024
RU / EN
Last update: Oct 30, 2024
Activation of Bone Marrow Multipotent Stromal Cells by Laser and EHF Radiation and Their Combined Impacts

Activation of Bone Marrow Multipotent Stromal Cells by Laser and EHF Radiation and Their Combined Impacts

Chailakhyan R.K., Gerasimov Yu.V., Yusupov V.I., Sviridov A.P., Tambiev A.Kh., Vorobieva N.N., Grosheva A.G., Kuralesova A.I., Moskvina I.L., Bagratashvili V.N.
Key words: multipotent stromal cells; proliferation activity of stromal cells; colony-forming efficiency; laser radiation; EHF radiation; acoustic pulses of laser-induced hydrodynamics.
2017, volume 9, issue 1, page 28.

Full text

html pdf
2574
2711

The aim of the investigation was to study the effect of laser and extremely high frequency (EHF) radiation on the proliferative activity of bone marrow multipotent stromal cells (MSCs) in “normal” and “suppressed” states in vitro, as well as the ability of these factors to influence the content of MSCs in the bone marrow in vivo and in vitro.

Materials and Methods. Laser radiation of low and moderate intensity, acoustic pulses generated by laser radiation in biological tissue, and EHF radiation have been used for mono and combined (applied for the first time) impacts on MSCs in vivo and in vitro. Short-term fragmentary laser heating of rat shins in vivo has been used to stimulate the colony-forming efficiency of MSCs.Stimulation of proliferative activity and MSCs content were studied on the strains derived from human bone marrow, rabbits, guinea pigs and rats.

Irradiation of MSCs strains was performed in the “normal” state, as well as in the “suppressed” strains with the decreased proliferative activity induced by the reduction of fetal serum concentration in the nutrient medium of the cultivated cells. Exposure doses were varied by altering the power and time of irradiation.

Results. A twofold increase of colony number was observed when the bone marrow was heated by a laser irradiation, and a marked stimulation of colony-forming efficiency exceeding the reference values by 85% under EHF radiation of bone marrow suspension with the dose of 8 J/cm2 was also noted.

The effect of physical factors greatly depends on the MSCs state: there is a significant enhancement of proliferative activity of the cells being in the “suppressed” state. Acoustic pulses of laser-induced hydrodynamics cause a statistically significant (p<0.01) increase of proliferative activity of human MSCs (by 80% relative to the control). The proliferative activity of human MSCs was not enhanced under combined impacts compared to the exposure to mono acoustic pulses of laser-induced hydrodynamics.

Conclusion. The studied physical effects in vivo and in vitro increase the content of MSCs in the initial bone marrow, as well as their proliferative activity in the process of MSCs strains development in vitro. Application of these techniques in clinic will make it possible to obtain the necessary cell number at earlier passages for autologous MSCs transplantation preventing thereby chromosomal aberrations in MSCs cultures.

  1. Chailakhyan R.K., Latykina K.S. Spontaneous and induced differentiation of bone tissue in population of fibroblast-like cells derived from prolonged monolayer cultures of bone marrow and spleen. Doklady AN SSSR 1969; 187(2): 473–479.
  2. Friedenstein A.J., Chailakhyan R.K., Gerasimov U.V. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 1987; 20(3): 263–272, https://doi.org/10.1111/j.1365-2184.1987.tb01309.x.
  3. Ng T.K., Fortino V.R., Pelaez D., Cheung H.S. Progress of mesenchymal stem cell therapy for neural and retinal diseases. World J Stem Cells 2014; 6(2): 111–119, https://doi.org/10.4252/wjsc.v6.i2.111.
  4. Chen S.L., Fang W.W., Ye F., Liu Y.H., Qian J., Shan S.J., Zhang J.J., Chunhua R.Z., Liao L.M., Lin S., Sun J.P. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 2004; 94(1): 92–95, https://doi.org/10.1016/j.amjcard.2004.03.034.
  5. Osepyan I.A., Chaylakhyan R.K., Garibyan E.S., Ayvazyan V.P. Treatment of nonunion fractures of false joints and long bone defects by transplantation of autologous bone marrow fibroblasts cultured in vitro and implanted into ASM. Ortopediya, travmatologiya i protezirovanie 1987; 9: 96–98.
  6. Wakitani S., Imoto K., Yamamoto T., Saito M., Murata N., Yoneda M. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage 2002; 10(3): 199–206, https://doi.org/10.1053/joca.2001.0504.
  7. Chailakhyan R.K., Gerasimov Y.V., Fridenshtein A.Y. Number of osteogenic precursor cells in bone marrow and their multiplication in culture. Bull Exp Biol Med 1984; 98(5): 1570–1573, https://doi.org/10.1007/bf00800038.
  8. Chailakhyan R.K., Gerasimov Y.V., Kuralesova A.I., Latsinik N.V., Genkina E.N., Chailakhyan M.R. Proliferative and differentiation potential of individual clones derived from bone marrow stromal precursor cells. Biology Bulletin of the Russian Academy of Sciences 2001; 28(6): 575–584, https://doi.org/10.1023/a:1012316218732.
  9. Bochkov N.P., Nikitina V.A. Cytogenetics of human stem cells. Molekulyarnaya meditsina 2008; 3: 40–47.
  10. Tuby H., Maltz L., Oron U. Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers Surg Med 2007; 39(4): 373–378, https://doi.org/10.1002/lsm.20492.
  11. Eduardo F. de P., Bueno D.F., de Freitas P.M., Marques M.M., Passos-Bueno M.R., Eduardo Cde P., Zatz M. Stem cell proliferation under low intensity laser irradiation: a preliminary study. Lasers Surg Med 2008; 40(6): 433–438, https://doi.org/10.1002/lsm.20646.
  12. Chailahyan R.K., Gerasimov Ju.V., Sviridov A.P., Kondjurin A.V., Tambiev A.H., Bagratishvili V.N. Effect of IR laser radiation on the multipotent mesenchymal stromal stem cells of rat marrow in vivo. Rossiyskiy immunologicheskiy zhurnal 2009; 3(3–4(12)): 333–337.
  13. Chailakhyan R.K., Yusupov V.I., Gerasimov J.V., Sobolev P.A., Tambiev A.H., Vorobieva N.N., Sviridov A.P., Bagratashvili V.N. Effect of hydrodynamic processes and low-intensity radiation with wavelengths 0.63 μm and 7.1 mm on the proliferative activity of bone marrow stromal stem cells in vitro. Biomeditsina 2011; 1(2): 24–29.
  14. Chailakhyan R.K., Yusupov V.I., Sviridov A.P., Gerasimov Y.V., Tambiev A.Ch., Vorobieva N.N., Kuralesova A.I., Moskvina I.L., Bagratashvili V.N. Acoustic and EHF impact on bone marrow stromal stem cells in vitro. Biomeditsinskaya radioelektronika 2013; (2): 36–42.
  15. Tambiev A.h., Bagratashvili V.N., Gerasimov Yu.V., Sviridov A.P., Chaylakhyan R.K. Vliyanie KVCh-izlucheniya nizkoy intensivnosti na proliferatsiyu in vitro mul’tipotentnykh mezenkhimal’nykh stromal’nykh kletok kostnogo mozga. V kn.: Trudy XVI mezhdunarodnoy konferentsii “Novye informatsionnye tekhnologii v meditsine biologii, farmakologii” [Effect of low-intensity EHF radiation on in vitro proliferation of multipotent mesenchymal stromal cells of the bone marrow. In: Proceedings of XVI International Conference “New information technologies in medicine, biology, pharmacology”]. Gurzuf, Krym; 2008.
  16. Tambiev A.h., Bagratashvili V.N., Gerasimov Yu.V., Sviridov A.P., Antonov E.N., Chaylakhyan R.K. Deystvie elektromagnitnogo izlucheniya millimetrovogo diapazona nizkoy intensivnosti na stvolovye stromal’nye kletki kostnogo mozga. V kn.: Trudy XV mezhdunarodnoy konferentsii “Novye informatsionnye tekhnologii v meditsine biologii, farmakologii” [Effect of low-intensity millimeter-range electromagnetic radiation on the bone marrow stem stromal cells. In: Proceedings of XV International Conference “New information technologies in medicine, biology, pharmacology”]. Gurzuf, Krym; 2007.
  17. Tambiev A.h., Kirikova N.N., Betskiy O.V., Gulyaev Yu.V. Millimetrovye volny i fotosinteziruyushchie organizmy [Millimeter waves and photosynthesizing organisms]. Moscow: Radiotekhnika; 2003; 175 p.
  18. Chudnovskiy V.M., Leonova G.N., Skopinov S.A., Drozdov A.L., Yusupov V.I. Biologicheskie modeli i fizicheskie mekhanizmy lazernoy terapii [Biological models and physical mechanisms of laser therapy]. Vladivostok: Dal’nauka; 2002; 157 p.
  19. Chudnovskyi V., Bulanov V., Jusypov V. Laser induction of acoustic hydrodynamical effects in medicine. Fotonika 2010; 1: 30–36.
  20. Krochek I.V., Privalov V.A., Lappa A.V., Evnevich M.V., Minaev V.P. Lazernaya osteoperforatsiya v lechenii ostrogo i khronicheskogo osteomielita [Laser osteoperforation in managing acute and chronic osteomyelitis]. Chelyabinsk: ChGMA, ChGU; 2004.
  21. Chudnovskiy V.M., Bulanov V.A., Yusupov V.I., Korskov I.V., Kosareva O.V., Timoshenko V.S. Experimental backgrounding for laser puncture treatment of spinal osteochondrosis. Lazernaya meditsina 2010; 14(1): 30–35.
  22. Chudnovskiy V.I., Yusupov V.I. Metod lazernogo interventsionnogo vozdeystviya pri osteokhondroze [Method of laser interventional impact in osteochondrosis]. Patent RF 2321373. 2008.
  23. Sandler B.I., Sulyandziga L.N., Chudnovskiy V.M., Yusupov V.I., Kosareva O.V., Timoshenko V.S. Perspektivy lecheniya diskogennykh kompressionnykh form poyasnichno-kresttsovykh radikulitov s pomoshch’yu punktsionnykh neendoskopicheskikh lazernykh operatsiy [Perspectives of treating discogenic compression forms of lumbosacral radiculitis using puncture nonendoscopic laser operations]. Vladivostok: Dal’nauka; 2004; 181 p.
  24. Yusupov V.I., Chudnovskii V.M., Bagratashvili V.N. Laser-induced hydrodynamics in water-saturated biotissues. 1. Generation of bubbles in liquid. Laser Physics 2010; 20(7): 1641–1646, https://doi.org/10.1134/s1054660x1014001x.
  25. Yusupov I.V, Chudnovskii V.M., Bagratashvili V.N. Laser-induced hydrodynamics in water and biotissues nearby optical fiber tip. Hydrodynamics — advanced topics. Schulz H.E., Simões A.L.A., Lobosco R.J. (editors). InTech; 2011, https://doi.org/10.5772/28517.
  26. Lazernaya inzheneriya khryashchey [Laser cartilage engineering]. Pod red. Bagratashvili V.N., Sobol’ E.N., Shekhter A.B. [Bagratashvili V.N., Sobol’ E.N., Shekhter A.B. (editors)]. Moscow: Fizmatlit; 2006; 488 p.
  27. Buylin V.A., Moskvin S.V., Guliev S.G. Analiz vozmozhnostey sochetannogo primeneniya KVCh i lazernogo izlucheniy v meditsine [Analysis of capabilities of combined application of EHF and laser radiations in medicine]. URL: http://milta-f.ru/mil/articles/general_terapy/analyz.
  28. Komarova L.A., Terent’eva L.A., Egorova G.I. Sochetannye metody fizioterapii [Combined methods of physiotherapy]. Riga: Zinatne; 1986; 175 p.

Chailakhyan R.K., Gerasimov Yu.V., Yusupov V.I., Sviridov A.P., Tambiev A.Kh., Vorobieva N.N., Grosheva A.G., Kuralesova A.I., Moskvina I.L., Bagratashvili V.N. Activation of Bone Marrow Multipotent Stromal Cells by Laser and EHF Radiation and Their Combined Impacts. Sovremennye tehnologii v medicine 2017; 9(1): 28, https://doi.org/10.17691/stm2017.9.1.03


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank